Skip to main content

Advertisement

Log in

Cardiopulmonary bypass for pediatric cardiac surgery

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

The management of cardiopulmonary bypass for pediatric cardiac surgery is more challenging than that in adults due to the smaller size, immaturity, and complexity of the anatomy in children. Despite major improvements in cardiopulmonary bypass, there remain many subjects of debate. This review article discusses the physiology of cardiopulmonary bypass for pediatric and congenital heart surgery, including topics related to hemodilution, hypothermia, acid–base strategies, inflammatory response, and myocardial protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edmunds LH. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1998;66(5 Suppl):S12-6-8. http://www.ncbi.nlm.nih.gov/pubmed/9869435. Accessed 14 Nov 2016.

  2. Plestis K, Gold JP. Importance of blood pressure regulation in maintaining adequate tissue perfusion during cardiopulmonary bypass. Semin Thorac Cardiovasc Surg. 2001;13(2):170–5. https://doi.org/10.1053/stcs.2001.24071.

    Article  CAS  PubMed  Google Scholar 

  3. Matte GS. Perfusion for congenital heart surgery: notes on cardiopulmonary bypass for a complex patient population. New Jersey: Wiley; 2015.

    Book  Google Scholar 

  4. Kirshbom PM, Skaryak LA, DiBernardo LR, et al. Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest. Circulation. 1995;92(9 Suppl):II490–4. http://www.ncbi.nlm.nih.gov/pubmed/7586460. Accessed 8 Sept 2017.

  5. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg. 2012;94(4):1365–73. https://doi.org/10.1016/j.athoracsur.2012.05.135.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Iritakenishi T, Hayashi Y, Yamanaka H, Kamibayashi T, Ueda K, Mashimo T. Milrinone, a phosphodiesterase III inhibitor, prevents reduction of jugular bulb saturation during rewarming from hypothermic cardiopulmonary bypass. Perfusion. 2012;27(1):13–7. https://doi.org/10.1177/0267659111419888.

    Article  CAS  PubMed  Google Scholar 

  7. Swan H. The hydroxyl-hydrogen ion concentration ratio during hypothermia. Surg Gynecol Obstet. 1982;155(6):897–912. http://www.ncbi.nlm.nih.gov/pubmed/6293107. Accessed 22 Dec 2016.

  8. Hamilton C, Steinlechner B, Gruber E, Simon P, Wollenek G. The oxygen dissociation curve: quantifying the shift. Perfusion. 2004;19(3):141–4. https://doi.org/10.1191/0267659104pf734oa.

    Article  PubMed  Google Scholar 

  9. Mavroudis C, Ebert PA. Hemodilution causes decreased compliance in puppies. Circulation. 1978;58(3 Pt 2):I155–9. http://www.ncbi.nlm.nih.gov/pubmed/14740695. Accessed 8 Aug 2017.

  10. Jonas R, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126(6):1765–74. https://doi.org/10.1016/j.jtcvs.2003.04.003.

    Article  PubMed  Google Scholar 

  11. Pasquali SK, Hall M, Li JS, et al. Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the pediatric health information systems database. Circulation. 2010;122(21):2123–30. https://doi.org/10.1161/CIRCULATIONAHA.110.948737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pasquali SK, Li JS, He X, et al. Perioperative methylprednisolone and outcome in neonates undergoing heart surgery. Pediatrics. 2012;129(2):e385–e91. https://doi.org/10.1542/peds.2011-2034.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elhoff JJ, Chowdhury SM, Zyblewski SC, Atz AM, Bradley SM, Graham EM. Intraoperative steroid use and outcomes following the norwood procedure. Pediatr Crit Care Med. 2016;17(1):30–5. https://doi.org/10.1097/PCC.0000000000000541.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ando M, Park I-S, Wada N, Takahashi Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg. 2005;80(5):1672–8. https://doi.org/10.1016/j.athoracsur.2005.04.035. (discusison 1678).

    Article  PubMed  Google Scholar 

  15. Robert SM, Borasino S, Dabal RJ, Cleveland DC, Hock KM, Alten JA. Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med. 2015. https://doi.org/10.1097/PCC.0000000000000426.

    PubMed  Google Scholar 

  16. Draaisma AM, Hazekamp MG, Frank M, Anes N, Schoof PH, Huysmans HA. Modified ultrafiltration after cardiopulmonary bypass in pediatric cardiac surgery. Ann Thorac Surg. 1997;64(2):521–5. https://doi.org/10.1016/S0003-4975(97)00522-5.

    Article  CAS  PubMed  Google Scholar 

  17. Ziyaeifard M, Alizadehasl A, Massoumi G. Modified ultrafiltration during cardiopulmonary bypass and postoperative course of pediatric cardiac surgery. Res Cardiovasc Med. 2014;2(2):1–6. https://doi.org/10.5812/cardiovascmed.17830.

    Article  Google Scholar 

  18. Türköz A, Tunçay E, Balci ŞT, et al. The effect of modified ultrafiltration duration on pulmonary functions and hemodynamics in newborns and infants following arterial switch operation*. Pediatr Crit Care Med. 2014;15(7):600–7. https://doi.org/10.1097/PCC.0000000000000178.

    Article  PubMed  Google Scholar 

  19. Lang SM, Syed MA, Dziura J, et al. The effect of modified ultrafiltration on angiopoietins in pediatric cardiothoracic operations. Ann Thorac Surg. 2014;98(5):1699–704. https://doi.org/10.1016/j.athoracsur.2014.06.053.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mahmoud AS, Burhani MS, Hannef A, Jamjoom A, Al-githmi IS, Baslaim GM. Effect of modified ultrafiltration on pulmonary function after cardiopulmonary bypass*. Chest. 2005;128(5):3447–53. https://doi.org/10.1378/chest.128.5.3447.

    Article  PubMed  Google Scholar 

  21. Williams GD, Ramamoorthy C, Chu L, et al. Modified and conventional ultrafiltration during pediatric cardiac surgery: clinical outcomes compared. J Thorac Cardiovasc Surg. 2006;132(6):1291–8. https://doi.org/10.1016/j.jtcvs.2006.05.059.

    Article  PubMed  Google Scholar 

  22. Grosse-Wortmann L, Al-Otay A, Yoo S-J. Aortopulmonary collaterals after bidirectional cavopulmonary connection or fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009;2(3):219–25. https://doi.org/10.1161/CIRCIMAGING.108.834192.

    Article  PubMed  Google Scholar 

  23. White MC, Edgell D, Li J, Wang J, Holtby H. The relationship between cerebral and somatic oxygenation and superior and inferior vena cava flow, arterial oxygenation and pressure in infants during cardiopulmonary bypass. Anaesthesia. 2009;64(3):251–8. https://doi.org/10.1111/j.1365-2044.2008.05791.x.

    Article  CAS  PubMed  Google Scholar 

  24. Bove EL, Stammers AH. Recovery of left ventricular function after hypothermic global ischemia. Age-related differences in the isolated working rabbit heart. J Thorac Cardiovasc Surg. 1986;91(1):115–122. http://www.ncbi.nlm.nih.gov/pubmed/3941554. Accessed 3 Sept 2017.

  25. Hiramatsu T, Zund G, Schermerhorn ML, Shinóka T, Miura T, Mayer JE. Age differences in effects of hypothermic ischemia on endothelial and ventricular function. Ann Thorac Surg. 1995;60(6 Suppl):S501–4. http://www.ncbi.nlm.nih.gov/pubmed/8604919. Accessed 3 Sept 2017.

  26. DeLeon SY, Idriss FS, Ilbawi MN, Duffy CE, Benson DW, Backer CL. Comparison of single versus multidose blood cardioplegia in arterial switch procedures. Ann Thorac Surg. 1988;45(5):548–53. http://www.ncbi.nlm.nih.gov/pubmed/3365046. Accessed 3 Sept 2017.

  27. Kohman LJ, Veit LJ. Single-dose versus multidose cardioplegia in neonatal hearts. J Thorac Cardiovasc Surg. 1994;107(6):1512–18. http://www.ncbi.nlm.nih.gov/pubmed/8196397. Accessed 3 Sept 2017.

  28. Kotani Y, Tweddell J, Gruber P, et al. Current cardioplegia practice in pediatric cardiac surgery: a North American multiinstitutional survey. Ann Thorac Surg. 2013;96(3):923–9. https://doi.org/10.1016/j.athoracsur.2013.05.052.

    Article  PubMed  Google Scholar 

  29. Modi P, Suleiman MS, Reeves B, et al. Myocardial metabolic changes during pediatric cardiac surgery: a randomized study of 3 cardioplegic techniques. J Thorac Cardiovasc Surg. 2004;128(1):67–75. https://doi.org/10.1016/j.jtcvs.2003.11.071.

    Article  CAS  PubMed  Google Scholar 

  30. Pridjian AK, Levitsky S, Krukenkamp I, Silverman NA, Feinberg H. Developmental changes in reperfusion injury. A comparison of intracellular cation accumulation in the newborn, neonatal, and adult heart. J Thorac Cardiovasc Surg. 1987;93(3):428–33. http://www.ncbi.nlm.nih.gov/pubmed/2434806. Accessed 3 Sept 2017.

  31. Matte GS, Nido PJ. History and use of del Nido cardioplegia solution at Boston Children’s Hospital. J Extracorpor Technol. 2012;44(7):98–103. http://amsect.societyhq.com/documents/PDF/JECT-feature-article.pdf. Accessed 22 June 2017.

  32. Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J. 1984;108(1):188–93. https://doi.org/10.1016/0002-8703(84)90572-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Hirata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, Y. Cardiopulmonary bypass for pediatric cardiac surgery. Gen Thorac Cardiovasc Surg 66, 65–70 (2018). https://doi.org/10.1007/s11748-017-0870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-017-0870-1

Keywords

Navigation