General Thoracic and Cardiovascular Surgery

, Volume 64, Issue 11, pp 639–650 | Cite as

Optimal temperature management in aortic arch operations

  • Michael O. Kayatta
  • Edward P. ChenEmail author
Current Topics Review Article


Hypothermic circulatory arrest is a critical component of aortic arch procedures, without which these operations could not be safely performed. Despite the use of hypothermia as a protective adjunct for organ preservation, aortic arch surgery remains complex and is associated with numerous complications despite years of surgical advancement. Deep hypothermic circulatory arrest affords the surgeon a safe period of time to perform the arch reconstruction, but this interruption of perfusion comes at a high clinical cost: stroke, paraplegia, and organ dysfunction are all potential-associated complications. Retrograde cerebral perfusion was subsequently developed as a technique to improve upon the rates of neurologic dysfunction, but was done with only modest success. Selective antegrade cerebral perfusion, on the other hand, has consistently been shown to be an effective form of cerebral protection over deep hypothermia alone, even during extended periods of circulatory arrest. A primary disadvantage of using deep hypothermic circulatory arrest is the prolonged bypass times required for cooling and rewarming which adds significantly to the morbidity associated with these procedures, especially coagulopathic bleeding and organ dysfunction. In an effort to mitigate this problem, the degree of hypothermia at the time of the initial circulatory arrest has more recently been reduced in multiple centers across the globe. This technique of moderate hypothermic circulatory arrest in combination with adjunctive brain perfusion techniques has been shown to be safe when performing aortic arch operations. In this review, we will discuss the evolution of these protection strategies as well as their relative strengths and weaknesses.


Aortic arch surgery Hypothermia Circulatory arrest Cerebral perfusion Temperature management 


Compliance with ethical standards

Conflict of interest

Michael O. Kayatta has no conflict of interest. Edward P. Chen has no conflict of interest.


  1. 1.
    Griepp RB, Stinson EB, Hollingsworth JF, Buehler D. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg. 1975;70:1051–63.PubMedGoogle Scholar
  2. 2.
    Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37:S186–202.CrossRefPubMedGoogle Scholar
  3. 3.
    Hagl C, Ergin MA, Galla JD, et al. Neurologic outcome after ascending aorta-aortic arch operations: effect of brain protection technique in high-risk patients. J Thorac Cardiovasc Surg. 2001;121:1107–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Svensson LG, Crawford ES, Hess KR et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg 1993;106:19–28 (Discussion 28–31).Google Scholar
  5. 5.
    Krahenbuhl ES, Immer FF, Stalder M, Englberger L, Eckstein FS, Carrel TP. Temporary neurological dysfunction after surgery of the thoracic aorta: a predictor of poor outcome and impaired quality of life. Eur J Cardiothorac Surg. 2008;33:1025–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hagl C, Khaladj N, Karck M, et al. Hypothermic circulatory arrest during ascending and aortic arch surgery: the theoretical impact of different cerebral perfusion techniques and other methods of cerebral protection. Eur J Cardiothorac Surg. 2003;24:371–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Reich DL, Uysal S, Sliwinski M, et al. Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg. 1999;117:156–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Patel N, Minhas JS, Chung EM. Risk factors associated with cognitive decline after cardiac surgery: a systematic review. Cardiovasc Psychiatry Neurol. 2015;2015:370612.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Reed RL 2nd, Bracey AW Jr, Hudson JD, Miller TA, Fischer RP. Hypothermia and blood coagulation: dissociation between enzyme activity and clotting factor levels. Circ Shock. 1990;32:141–52.PubMedGoogle Scholar
  10. 10.
    Harrington DK, Lilley JP, Rooney SJ, Bonser RS. Nonneurologic morbidity and profound hypothermia in aortic surgery. Ann Thorac Surg. 2004;78:596–601.CrossRefPubMedGoogle Scholar
  11. 11.
    Kamiya H, Hagl C, Kropivnitskaya I, et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. J Thorac Cardiovasc Surg. 2007;133:501–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Elefteriades JA. What is the best method for brain protection in surgery of the aortic arch? Straight DHCA. Cardiol Clin. 2010;28:381–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Ueda Y. What is the best method for brain protection in surgery of the aortic arch? Retrograde cerebral perfusion. Cardiol Clin. 2010;28:371–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bachet J. What is the best method for brain protection in surgery of the aortic arch? Selective antegrade cerebral perfusion. Cardiol Clin. 2010;28:389–401.CrossRefPubMedGoogle Scholar
  15. 15.
    Yan TD, Bannon PG, Bavaria J, et al. Consensus on hypothermia in aortic arch surgery. Ann Cardiothorac Surg. 2013;2:163–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    McCullough JN, Zhang N, Reich DL et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 1999;67:1895–9 (Discussion 1821–919).Google Scholar
  17. 17.
    Griepp RB, Ergin MA, McCullough JN, et al. Use of hypothermic circulatory arrest for cerebral protection during aortic surgery. J Card Surg. 1997;12:312–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71:14–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Halstead JC, Spielvogel D, Meier DM et al. Optimal pH strategy for selective cerebral perfusion. Eur J Cardiothorac Surg 2005;28:266–73 (Discussion 273).Google Scholar
  20. 20.
    Kofstad J. Blood gases and hypothermia: some theoretical and practical considerations. Scand J Clin Lab Invest Suppl. 1996;224:21–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohkura K, Kazui T, Yamamoto S, et al. Comparison of pH management during antegrade selective cerebral perfusion in canine models with old cerebral infarction. J Thorac Cardiovasc Surg. 2004;128:378–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Mezrow CK, Midulla PS, Sadeghi AM, et al. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures. J Thorac Cardiovasc Surg. 1994;107:1006–19.PubMedGoogle Scholar
  24. 24.
    Westaby S. Coagulation disturbance in profound hypothermia: the influence of anti-fibrinolytic therapy. Semin Thorac Cardiovasc Surg. 1997;9:246–56.PubMedGoogle Scholar
  25. 25.
    Connolly JE, Roy A, Guernsey JM, Stemmer EA. Bloodless surgery by means of profound hypothermia and circulatory arrest. Effect on brain and heart. Ann Surg. 1965;162:724–37.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flores-Maldonado A, Medina-Escobedo CE, Rios-Rodriguez HM, Fernandez-Dominguez R. Mild perioperative hypothermia and the risk of wound infection. Arch Med Res. 2001;32:227–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Okita Y, Okada K, Omura A, et al. Total arch replacement using antegrade cerebral perfusion. J Thorac Cardiovasc Surg. 2013;145:S63–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Patel HJ, Nguyen C, Diener AC, Passow MC, Salata D, Deeb GM. Open arch reconstruction in the endovascular era: analysis of 721 patients over 17 years. J Thorac Cardiovasc Surg. 2011;141:1417–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Gega A, Rizzo JA, Johnson MH, Tranquilli M, Farkas EA, Elefteriades JA. Straight deep hypothermic arrest: experience in 394 patients supports its effectiveness as a sole means of brain preservation. Ann Thorac Surg 2007;84:759–66 (Discussion 757–66).Google Scholar
  30. 30.
    Percy A, Widman S, Rizzo JA, Tranquilli M, Elefteriades JA. Deep hypothermic circulatory arrest in patients with high cognitive needs: full preservation of cognitive abilities. Ann Thorac Surg. 2009;87:117–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Ergin MA, Uysal S, Reich DL et al. Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg 1999;67:1887–90 (Discussion 1884–91).Google Scholar
  32. 32.
    Ouzounian M, LeMaire SA, Coselli JS. Open aortic arch repair: state-of-the-art and future perspectives. Semin Thorac Cardiovasc Surg. 2013;25:107–15.CrossRefPubMedGoogle Scholar
  33. 33.
    Ergin MA, Galla JD, Lansman s L, Quintana C, Bodian C, Griepp RB. Hypothermic circulatory arrest in operations on the thoracic aorta. Determinants of operative mortality and neurologic outcome. J Thorac Cardiovasc Surg 1994;107:788–97 (Discussion 789–97).Google Scholar
  34. 34.
    Ueda Y, Miki S, Kusuhara K, Okita Y, Tahata T, Yamanaka K. Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino). 1990;31:553–8.Google Scholar
  35. 35.
    Safi HJ, Letsou GV, Iliopoulos DC, et al. Impact of retrograde cerebral perfusion on ascending aortic and arch aneurysm repair. Ann Thorac Surg. 1997;63:1601–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Estrera AL, Miller CC 3rd, Lee TY, Shah P, Safi HJ. Ascending and transverse aortic arch repair: the impact of retrograde cerebral perfusion. Circulation. 2008;118:S160–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Ehrlich MP, Fang WC, Grabenwoger M, et al. Impact of retrograde cerebral perfusion on aortic arch aneurysm repair. J Thorac Cardiovasc Surg. 1999;118:1026–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Okita Y, Takamoto S, Ando M, Morota T, Matsukawa R, Kawashima Y. Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: no relation of early death, stroke, and delirium to the duration of circulatory arrest. J Thorac Cardiovasc Surg. 1998;115:129–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Ueda Y, Okita Y, Aomi S, Koyanagi H, Takamoto S. Retrograde cerebral perfusion for aortic arch surgery: analysis of risk factors. Ann Thorac Surg 1999;67:1879–82 (Discussion 1874–91).Google Scholar
  40. 40.
    Anttila V, Pokela M, Kiviluoma K, Makiranta M, Hirvonen J, Juvonen T. Is maintained cranial hypothermia the only factor leading to improved outcome after retrograde cerebral perfusion? An experimental study with a chronic porcine model. J Thorac Cardiovasc Surg. 2000;119:1021–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Usui A, Oohara K, Liu TL, et al. Determination of optimum retrograde cerebral perfusion conditions. J Thorac Cardiovasc Surg. 1994;107:300–8.PubMedGoogle Scholar
  42. 42.
    Estrera AL, Garami Z, Miller CC, 3rd et al. Determination of cerebral blood flow dynamics during retrograde cerebral perfusion using power M-mode transcranial Doppler. Ann Thorac Surg 2003;76:704–9 (Discussion 709–10).Google Scholar
  43. 43.
    Ono T, Okita Y, Ando M, Kitamura S. Retrograde cerebral perfusion in human brains. Lancet. 2000;356:1323.CrossRefPubMedGoogle Scholar
  44. 44.
    Boeckxstaens CJ, Flameng WJ. Retrograde cerebral perfusion does not perfuse the brain in nonhuman primates. Ann Thorac Surg 1995;60:319–27 (Discussion 318–27).Google Scholar
  45. 45.
    Ehrlich MP, Hagl C, McCullough JN, et al. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig. J Thorac Cardiovasc Surg. 2001;122:331–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Midulla PS, Gandsas A, Sadeghi AM et al. Comparison of retrograde cerebral perfusion to antegrade cerebral perfusion and hypothermic circulatory arrest in a chronic porcine model. J Card Surg 1994;9:560–74 (Discussion 575).Google Scholar
  47. 47.
    Katz MG, Khazin V, Steinmetz A, et al. Distribution of cerebral flow using retrograde versus antegrade cerebral perfusion. Ann Thorac Surg. 1999;67:1065–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Filgueiras CL, Winsborrow B, Ye J, et al. A 31p-magnetic resonance study of antegrade and retrograde cerebral perfusion during aortic arch surgery in pigs. J Thorac Cardiovasc Surg. 1995;110:55–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Juvonen T, Weisz DJ, Wolfe D, et al. Can retrograde perfusion mitigate cerebral injury after particulate embolization? A study in a chronic porcine model. J Thorac Cardiovasc Surg. 1998;115:1142–59.CrossRefPubMedGoogle Scholar
  50. 50.
    Dresser LP, McKinney WM. Anatomic and pathophysiologic studies of the human internal jugular valve. Am J Surg. 1987;154:220–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Kunzli A, Zingg PO, Zund G, Leskosek B, von Segesser LK. Does retrograde cerebral perfusion via superior vena cava cannulation protect the brain? Eur J Cardiothorac Surg. 2006;30:906–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Bonser RS, Wong CH, Harrington D, et al. Failure of retrograde cerebral perfusion to attenuate metabolic changes associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2002;123:943–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Harrington DK, Bonser M, Moss A, Heafield MT, Riddoch MJ, Bonser RS. Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg. 2003;126:638–44.CrossRefPubMedGoogle Scholar
  54. 54.
    Reich DL, Uysal S, Ergin MA, Bodian CA, Hossain S, Griepp RB. Retrograde cerebral perfusion during thoracic aortic surgery and late neuropsychological dysfunction. Eur J Cardiothorac Surg. 2001;19:594–600.CrossRefPubMedGoogle Scholar
  55. 55.
    Reich DL, Uysal S, Ergin MA, Griepp RB. Retrograde cerebral perfusion as a method of neuroprotection during thoracic aortic surgery. Ann Thorac Surg. 2001;72:1774–82.CrossRefPubMedGoogle Scholar
  56. 56.
    De Bakey ME, Crawford ES, Cooley DA, Morris GC Jr. Successful resection of fusiform aneurysm of aortic arch with replacement by homograft. Surg Gynecol Obstet. 1957;105:657–64.Google Scholar
  57. 57.
    Frist WH, Baldwin JC, Starnes VA, et al. A reconsideration of cerebral perfusion in aortic arch replacement. Ann Thorac Surg. 1986;42:273–81.CrossRefPubMedGoogle Scholar
  58. 58.
    Bachet J, Guilmet D, Goudot B et al. Cold cerebroplegia. A new technique of cerebral protection during operations on the transverse aortic arch. J Thorac Cardiovasc Surg 1991;102:85–93 (Discussion 84–93).Google Scholar
  59. 59.
    Matsuda H, Nakano S, Shirakura R, et al. Surgery for aortic arch aneurysm with selective cerebral perfusion and hypothermic cardiopulmonary bypass. Circulation. 1989;80:I243–8.PubMedGoogle Scholar
  60. 60.
    Kazui T, Inoue N, Komatsu S. Surgical treatment of aneurysms of the transverse aortic arch. J Cardiovasc Surg (Torino). 1989;30:402–6.Google Scholar
  61. 61.
    Swain JA, McDonald TJ, Jr., Griffith PK, Balaban RS, Clark RE, Ceckler T. Low-flow hypothermic cardiopulmonary bypass protects the brain. J Thorac Cardiovasc Surg 1991;102:76–83 (Discussion 74–83).Google Scholar
  62. 62.
    Sakurada T, Kazui T, Tanaka H, Komatsu S. Comparative experimental study of cerebral protection during aortic arch reconstruction. Ann Thorac Surg. 1996;61:1348–54.CrossRefPubMedGoogle Scholar
  63. 63.
    Hagl C, Khaladj N, Peterss S, et al. Hypothermic circulatory arrest with and without cold selective antegrade cerebral perfusion: impact on neurological recovery and tissue metabolism in an acute porcine model. Eur J Cardiothorac Surg. 2004;26:73–80.CrossRefPubMedGoogle Scholar
  64. 64.
    Ye J, Yang L, Del Bigio MR, et al. Neuronal damage after hypothermic circulatory arrest and retrograde cerebral perfusion in the pig. Ann Thorac Surg. 1996;61:1316–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Di Eusanio M, Schepens MA, Morshuis WJ et al. Brain protection using antegrade selective cerebral perfusion: a multicenter study. Ann Thorac Surg 2003;76:1181–8 (Discussion 1188–9).Google Scholar
  66. 66.
    Numata S, Ogino H, Sasaki H et al. Total arch replacement using antegrade selective cerebral perfusion with right axillary artery perfusion. Eur J Cardiothorac Surg 2003;23:771–5 (Discussion 775).Google Scholar
  67. 67.
    Bakhtiary F, Dogan S, Zierer A, et al. Antegrade cerebral perfusion for acute type A aortic dissection in 120 consecutive patients. Ann Thorac Surg. 2008;85:465–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Harrington DK, Walker AS, Kaukuntla H et al. Selective antegrade cerebral perfusion attenuates brain metabolic deficit in aortic arch surgery: a prospective randomized trial. Circulation 2004;110:II231–6.Google Scholar
  69. 69.
    Sundt TM, 3rd, Orszulak TA, Cook DJ, Schaff HV. Improving results of open arch replacement. Ann Thorac Surg 2008;86:787–96 (Discussion 787–96).Google Scholar
  70. 70.
    Usui A, Miyata H, Ueda Y, Motomura N, Takamoto S. Risk-adjusted and case-matched comparative study between antegrade and retrograde cerebral perfusion during aortic arch surgery: based on the Japan Adult Cardiovascular Surgery Database: the Japan Cardiovascular Surgery Database Organization. Gen Thorac Cardiovasc Surg. 2012;60:132–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Okita Y, Miyata H, Motomura N, Takamoto S, Japan Cardiovascular Surgery Database O. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion: analysis based on the Japan Adult Cardiovascular Surgery Database. J Thorac Cardiovasc Surg. 2015;149:S65–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Immer FF, Lippeck C, Barmettler H et al. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrest. Circulation 2004;110:II250–5.Google Scholar
  73. 73.
    Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg. 2001;72:72–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Hu Z, Wang Z, Ren Z, et al. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients. J Thorac Cardiovasc Surg. 2014;148:544–60.CrossRefPubMedGoogle Scholar
  75. 75.
    Tian DH, Wan B, Bannon PG, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2:148–58.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Etz CD, Plestis KA, Kari FA et al. Axillary cannulation significantly improves survival and neurologic outcome after atherosclerotic aneurysm repair of the aortic root and ascending aorta. Ann Thorac Surg 2008;86:441–6 (Discussion 446–7).Google Scholar
  77. 77.
    Preventza O, Bakaeen FG, Stephens EH, Trocciola SM, de la Cruz KI, Coselli JS. Innominate artery cannulation: an alternative to femoral or axillary cannulation for arterial inflow in proximal aortic surgery. J Thorac Cardiovasc Surg. 2013;145:S191–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Urbanski PP, Lenos A, Zacher M, Diegeler A. Unilateral cerebral perfusion: right versus left. Eur J Cardiothorac Surg. 2010;37:1332–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Leshnower BG, Myung RJ, Kilgo PD, et al. Moderate hypothermia and unilateral selective antegrade cerebral perfusion: a contemporary cerebral protection strategy for aortic arch surgery. Ann Thorac Surg. 2010;90:547–54.CrossRefPubMedGoogle Scholar
  80. 80.
    Lu S, Sun X, Hong T, et al. Bilateral versus unilateral antegrade cerebral perfusion in arch reconstruction for aortic dissection. Ann Thorac Surg. 2012;93:1917–20.CrossRefPubMedGoogle Scholar
  81. 81.
    Zierer A, El-Sayed Ahmad A, Papadopoulos N, Moritz A, Diegeler A, Urbanski PP. Selective antegrade cerebral perfusion and mild (28 °C–30 °C) systemic hypothermic circulatory arrest for aortic arch replacement: results from 1002 patients. J Thorac Cardiovasc Surg. 2012;144:1042–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Merkkola P, Tulla H, Ronkainen A, et al. Incomplete circle of Willis and right axillary artery perfusion. Ann Thorac Surg. 2006;82:74–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Papantchev V, Hristov S, Todorova D, et al. Some variations of the circle of Willis, important for cerebral protection in aortic surgery—a study in Eastern Europeans. Eur J Cardiothorac Surg. 2007;31:982–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Urbanski PP, Lenos A, Blume JC, et al. Does anatomical completeness of the circle of Willis correlate with sufficient cross-perfusion during unilateral cerebral perfusion? Eur J Cardiothorac Surg. 2008;33:402–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Krahenbuhl ES, Clement M, Reineke D, et al. Antegrade cerebral protection in thoracic aortic surgery: lessons from the past decade. Eur J Cardiothorac Surg. 2010;38:46–51.CrossRefPubMedGoogle Scholar
  86. 86.
    Dossche KM, Schepens MA, Morshuis WJ, Muysoms FE, Langemeijer JJ, Vermeulen FE. Antegrade selective cerebral perfusion in operations on the proximal thoracic aorta. Ann Thorac Surg 1999;67:1904–10 (Discussion 1919–21).Google Scholar
  87. 87.
    Malvindi PG, Scrascia G, Vitale N. Is unilateral antegrade cerebral perfusion equivalent to bilateral cerebral perfusion for patients undergoing aortic arch surgery? Interact Cardiovasc Thorac Surg. 2008;7:891–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 2007;83:S865–9 (Discussion S862–90).Google Scholar
  89. 89.
    Svensson LG, Blackstone EH, Rajeswaran J et al. Does the arterial cannulation site for circulatory arrest influence stroke risk? Ann Thorac Surg 2004;78:1274–84 (Discussion 1274–84).Google Scholar
  90. 90.
    Haldenwang PL, Strauch JT, Amann I, et al. Impact of pump flow rate during selective cerebral perfusion on cerebral hemodynamics and metabolism. Ann Thorac Surg. 2010;90:1975–84.CrossRefPubMedGoogle Scholar
  91. 91.
    Jonsson O, Morell A, Zemgulis V, et al. Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20 degrees centigrade. Ann Thorac Surg. 2011;91:1198–205.CrossRefPubMedGoogle Scholar
  92. 92.
    Tanaka H, Kazui T, Sato H, Inoue N, Yamada O, Komatsu S. Experimental study on the optimum flow rate and pressure for selective cerebral perfusion. Ann Thorac Surg. 1995;59:651–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Tanaka J, Shiki K, Asou T, Yasui H, Tokunaga K. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J Thorac Cardiovasc Surg. 1988;95:124–32.PubMedGoogle Scholar
  94. 94.
    Halstead JC, Meier M, Wurm M, et al. Optimizing selective cerebral perfusion: deleterious effects of high perfusion pressures. J Thorac Cardiovasc Surg. 2008;135:784–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Khaladj N, Peterss S, Oetjen P, et al. Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective antegrade cerebral perfusion: which temperature provides best brain protection? Eur J Cardiothorac Surg. 2006;30:492–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Strauch JT, Spielvogel D, Lauten A, et al. Optimal temperature for selective cerebral perfusion. J Thorac Cardiovasc Surg. 2005;130:74–82.CrossRefPubMedGoogle Scholar
  97. 97.
    Kazui T, Inoue N, Yamada O, Komatsu S. Selective cerebral perfusion during operation for aneurysms of the aortic arch: a reassessment. Ann Thorac Surg. 1992;53:109–14.CrossRefPubMedGoogle Scholar
  98. 98.
    Urbanski PP, Lenos A, Bougioukakis P, Neophytou I, Zacher M, Diegeler A. Mild-to-moderate hypothermia in aortic arch surgery using circulatory arrest: a change of paradigm? Eur J Cardiothorac Surg. 2012;41:185–91.CrossRefPubMedGoogle Scholar
  99. 99.
    Numata S, Tsutsumi Y, Monta O et al. Aortic arch repair with antegrade selective cerebral perfusion using mild to moderate hypothermia of more than 28 degrees C. Ann Thorac Surg 2012;94:90–5 (Discussion 95–6).Google Scholar
  100. 100.
    Minatoya K, Ogino H, Matsuda H, et al. Evolving selective cerebral perfusion for aortic arch replacement: high flow rate with moderate hypothermic circulatory arrest. Ann Thorac Surg. 2008;86:1827–31.CrossRefPubMedGoogle Scholar
  101. 101.
    Etz CD, Luehr M, Kari FA, et al. Selective cerebral perfusion at 28 degrees C—is the spinal cord safe? Eur J Cardiothorac Surg. 2009;36:946–55.CrossRefPubMedGoogle Scholar
  102. 102.
    Strauch JT, Lauten A, Spielvogel D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004;25:708–15.CrossRefPubMedGoogle Scholar
  103. 103.
    Halstead JC, Wurm M, Meier DM, et al. Avoidance of hemodilution during selective cerebral perfusion enhances neurobehavioral outcome in a survival porcine model. Eur J Cardiothorac Surg. 2007;32:514–20.CrossRefPubMedGoogle Scholar
  104. 104.
    Gutsche JT, Feinman J, Silvay G, et al. Practice variations in the conduct of hypothermic circulatory arrest for adult aortic arch repair: focus on an emerging European paradigm. Heart Lung Vessel. 2014;6:43–51.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Hagl C, Tatton NA, Khaladj N, et al. Involvement of apoptosis in neurological injury after hypothermic circulatory arrest: a new target for therapeutic intervention? Ann Thorac Surg. 2001;72:1457–64.CrossRefPubMedGoogle Scholar
  106. 106.
    Cooper WA, Duarte IG, Thourani VH et al. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann Thorac Surg 2000;69:696–702 (Discussion 703).Google Scholar
  107. 107.
    Leshnower BG, Kilgo PD, Chen EP. Total arch replacement using moderate hypothermic circulatory arrest and unilateral selective antegrade cerebral perfusion. J Thorac Cardiovasc Surg. 2014;147:1488–92.CrossRefPubMedGoogle Scholar
  108. 108.
    Kazui T, Washiyama N, Muhammad BA et al. Total arch replacement using aortic arch branched grafts with the aid of antegrade selective cerebral perfusion. Ann Thorac Surg 2000;70:3–8 (Discussion 8–9).Google Scholar
  109. 109.
    Kulik A, Castner CF, Kouchoukos NT. Outcomes after total aortic arch replacement with right axillary artery cannulation and a presewn multibranched graft. Ann Thorac Surg. 2011;92:889–97.CrossRefPubMedGoogle Scholar
  110. 110.
    Spielvogel D, Etz CD, Silovitz D, Lansman SL, Griepp RB. Aortic arch replacement with a trifurcated graft. Ann Thorac Surg 2007;83:S791–5 (Discussion S731–824).Google Scholar
  111. 111.
    Iba Y, Minatoya K, Matsuda H, et al. Contemporary open aortic arch repair with selective cerebral perfusion in the era of endovascular aortic repair. J Thorac Cardiovasc Surg. 2013;145:S72–7.CrossRefPubMedGoogle Scholar
  112. 112.
    Matsuyama S, Tabata M, Shimokawa T, Matsushita A, Fukui T, Takanashi S. Outcomes of total arch replacement with stepwise distal anastomosis technique and modified perfusion strategy. J Thorac Cardiovasc Surg. 2012;143:1377–81.CrossRefPubMedGoogle Scholar
  113. 113.
    Okita Y, Okada K, Omura A, et al. Total arch replacement using selective antegrade cerebral perfusion as the neuroprotection strategy. Ann Cardiothorac Surg. 2013;2:169–74.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Di Eusanio M, Schepens MA, Morshuis WJ, Di Bartolomeo R, Pierangeli A, Dossche KM. Antegrade selective cerebral perfusion during operations on the thoracic aorta: factors influencing survival and neurologic outcome in 413 patients. J Thorac Cardiovasc Surg. 2002;124:1080–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Pacini D, Leone A, Di Marco L, et al. Antegrade selective cerebral perfusion in thoracic aorta surgery: safety of moderate hypothermia. Eur J Cardiothorac Surg. 2007;31:618–22.CrossRefPubMedGoogle Scholar
  116. 116.
    Leshnower BG, Myung RJ, Thourani VH et al. Hemiarch replacement at 28 degrees C: an analysis of mild and moderate hypothermia in 500 patients. Ann Thorac Surg 2012;93:1910–5 (Discussion 1915–6).Google Scholar
  117. 117.
    Leshnower BG, Myung RJ, Chen EP. Aortic arch surgery using moderate hypothermia and unilateral selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2:288–95.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Mora Mangano CT, Neville MJ, Hsu PH, Mignea I, King J, Miller DC. Aprotinin, blood loss, and renal dysfunction in deep hypothermic circulatory arrest. Circulation. 2001;104:I276–81.CrossRefPubMedGoogle Scholar
  119. 119.
    Cooley DA, Ott DA, Frazier OH, Walker WE. Surgical treatment of aneurysms of the transverse aortic arch: experience with 25 patients using hypothermic techniques. Ann Thorac Surg. 1981;32:260–72.CrossRefPubMedGoogle Scholar
  120. 120.
    Algarni KD, Yanagawa B, Rao V, Yau TM. Profound hypothermia compared with moderate hypothermia in repair of acute type A aortic dissection. J Thorac Cardiovasc Surg. 2014;148:2888–94.CrossRefPubMedGoogle Scholar
  121. 121.
    Englum BR, Andersen ND, Husain AM, Mathew JP, Hughes GC. Degree of hypothermia in aortic arch surgery—optimal temperature for cerebral and spinal protection: deep hypothermia remains the gold standard in the absence of randomized data. Ann Cardiothorac Surg. 2013;2:184–93.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Etz CD, Plestis KA, Homann TM et al. Reoperative aortic root and transverse arch procedures: a comparison with contemporaneous primary operations. J Thorac Cardiovasc Surg 2008;136:860–7 (867 e861–3).Google Scholar
  123. 123.
    Lima B, Williams JB, Bhattacharya SD, et al. Results of proximal arch replacement using deep hypothermia for circulatory arrest: is moderate hypothermia really justifiable? Am Surg. 2011;77:1438–44.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Bachet J, Guilmet D, Goudot B et al. Antegrade cerebral perfusion with cold blood: a 13-year experience. Ann Thorac Surg 1999;67:1874–8 (Discussion 1874–91).Google Scholar
  125. 125.
    Suzuki T, Asai T, Nota H, et al. Selective cerebral perfusion with mild hypothermic lower body circulatory arrest is safe for aortic arch surgery. Eur J Cardiothorac Surg. 2013;43:e94–8.CrossRefPubMedGoogle Scholar
  126. 126.
    Di Eusanio M, Wesselink RM, Morshuis WJ, Dossche KM, Schepens MA. Deep hypothermic circulatory arrest and antegrade selective cerebral perfusion during ascending aorta-hemiarch replacement: a retrospective comparative study. J Thorac Cardiovasc Surg. 2003;125:849–54.CrossRefPubMedGoogle Scholar
  127. 127.
    Milewski RK, Pacini D, Moser GW, et al. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times. Ann Thorac Surg. 2010;89:1448–57.CrossRefPubMedGoogle Scholar
  128. 128.
    Misfeld M, Leontyev S, Borger MA, et al. What is the best strategy for brain protection in patients undergoing aortic arch surgery? A single center experience of 636 patients. Ann Thorac Surg. 2012;93:1502–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2016

Authors and Affiliations

  1. 1.Division of Cardiothoracic SurgeryEmory University School of MedicineAtlantaUSA

Personalised recommendations