Skip to main content
Log in

Myocardial protection in cardiac surgery: a historical review from the beginning to the current topics

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Myocardial protection has become an essential adjunctive measure in cardiac surgery for a couple of decades, because since the 1950s, the methods of cardioprotection (cardioplegic solutions and related procedures) have been improved by the mechanism of myocardial ischemia/reperfusion-induced damage being unveiled through the untiring efforts of researchers and clinicians. The concept of myocardial protection in cardiac surgery was proposed along with introduction of hypothermic crystalloid potassium cardioplegia in the beginning and has been diversified by pharmacological additives, blood cardioplegia, temperature modulation (warm; tepid), retrograde cardioplegia, controlled reperfusion, integrated cardioplegia, and pre-and postconditioning. This historical review summarized experimental and clinical studies dealing with the methods and results of myocardial protection in cardiac surgery, introducing the newly developed concepts for the last decade and the current topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cooley DA, Reul GJ, Wukasch DC. Ischemic contracture of the heart: “Stone heart”. Am J Cardiol. 1972;29:575–7.

    Article  PubMed  CAS  Google Scholar 

  2. Melrose DG, Dreyer B, Bentall HH, Baker JBE. Elective cardiac arrest. Lancet. 1955;2:21–2.

    Article  Google Scholar 

  3. Hearse DJ, Garlick PB, Humphrey SM. Ischemic contracture of the myocardium: mechanism and prevention. Am J Cardiol. 1977;39:986–93.

    Article  PubMed  CAS  Google Scholar 

  4. Hearse DJ, Braimbridge MV, Jynge P. Principles of cardioplegia, basic concepts. In: Hearse DJ, Braimbridge MV, Jynge P, editors. Protection of the ischemic myocardium: cardioplegia. New York: Raven Press Books, Ltd.; 1981. p. 151–66.

  5. Reidemeister JC, Heberer G, Bretschneider HJ. Induced cardiac arrest by sodium and calcium depletion and application of procaine. Intern Surg. 1967;47:535–40.

    CAS  Google Scholar 

  6. Gay WA Jr, Ebert PA. Functional metabolic and morphologic effects of potassium-induced cardioplegia. Surgery. 1973;74:284–90.

    PubMed  Google Scholar 

  7. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during ischemic cardiac arrest. The importance of magnesium in cardioplegic infusates. J Thorac Cardiovasc Surg. 1978;75:877–85.

    PubMed  CAS  Google Scholar 

  8. Bleese N, Döring V, Kalmar P, Pokar H, Polonius MJ, Steiner D, Rodewald G. Intraoperative myocardial protection by cardioplegia in hypothermia. J Thorac Cardiovasc Surg. 1978;75:405–13.

    PubMed  CAS  Google Scholar 

  9. Clark RE, Ferguson BA, West PN, Schuchleib RC, Henry PD. Pharmacological preservation of the ischemic heart. Ann Thorac Surrg. 1977;24:307–14.

    Article  CAS  Google Scholar 

  10. Robb-Nicholsen C, Currie WD, Wechsler AS. Effects of verapamil on myocardial tolerance to ischemic cardiac arrest. Circulation (Suppl I). 1978;58:119–24.

    Google Scholar 

  11. Hearse DJ, Stewart DA, Braimbridge MV. Cellular protection during myocardial ischemia: the development and utilization of a procedure for the induction of reversible ischemic arrest. Circulation. 1976;54:193–202.

    Article  PubMed  CAS  Google Scholar 

  12. Lolley DM, Hewitt RL, Drapanas T. Retroperfusion of the heart with glucose, insulin, and potassium during anoxic arrest. J Thorac Cardiovasc Surg. 1974;67:364–70.

    PubMed  CAS  Google Scholar 

  13. Levitsky S, Feinberg H. Protection of the myocardium with high energy solutions. Ann Thorac Surg. 1975;20:86–90.

    Article  PubMed  CAS  Google Scholar 

  14. Fey K, Follette D, Livesay J, Nelson R, Bugyl H, DeLand E, Buckberg GD. Effects of membrane stabilization on the safety of hypothermic arrest after aortic cross-clamping. Circulation. 1977;56(Suppl 2):143–7.

    Google Scholar 

  15. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during bypass and arrest, a possible hazard with lactate containing infusate. J Thorac Cardiovasc Surg. 1976;72:880–4.

    PubMed  CAS  Google Scholar 

  16. Kirsch U, Rodewald G, Kalmar P. Induced ischemic arrest in clinical experience with cardioplegia in open heart surgery. J Thorac Cardiovasc Surg. 1972;63:121–30.

    PubMed  CAS  Google Scholar 

  17. Bretschneider HJ, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG. Myocardial resistance and tolerance to ischemia. J Cardiovasc Surg. 1975;16:241–60.

    CAS  Google Scholar 

  18. Hearse DJ, Braimbridge MV, Jynge P. Components of cardioplegic solution. In: Hearse DJ, Braimbridge MV, Jynge P, editors. Protection of the ischemic myocardium: cardioplegia. New York: Raven Press Books, Ltd.; 1981. p. 209–99.

  19. Hearse DJ, Braimbridge MV, Jynge P. Cardioplegic solutions in clinical use. In: Hearse DJ, Braimbridge MV, Jynge P, editors. Protection of the ischemic myocardium: cardioplegia. New York: Raven Press Books, Ltd.; 1981. p. 341–52.

  20. Lolley DM, Ray JF, Myers WO, Sheldon G, Sautter RD. Reduction of intraoperative myocardial infarction by means of exogenous anaerobic substrate enhancement: prospective randomized study. Ann Thorac Surg. 1978;26:515–23.

    Article  PubMed  CAS  Google Scholar 

  21. Fujita T, Yamamoto F. Present status of cardioplegia in Japan, an analysis of a questionnaire. Nihon Kyobu Geka Gakkai Zasshi. 1986;34:1591–601 (Japanese).

    Google Scholar 

  22. Barner HB. Historical aspects and current review of myocardial protection. In: Salerno TA, editor. Warm heart surgery. London: Arnold, a member of the Hodder Headline Group; 1995. p. 1–15.

  23. Follette DM, Mulder DG, Maloney JV, Buckberg GD. Advantages of blood cardioplegia over continuous perfusion or intermittent ischemia. J Thorac Cardiovasc Surg. 1978;76:604–17.

    PubMed  CAS  Google Scholar 

  24. Flaherty JT, Schaff HV, Goldman RA, Gott VL. Metabolic and functional effects of progress of hypothermia during global ischemia. Am J Physiol Heart Circ Physiol. 1979;236:H839–45.

    CAS  Google Scholar 

  25. Kaijser L, Jansson E, Schmidt W, Bomfim V. Myocardial energy depletion during profound hypothermic cardioplegia for cardiac operations. J Thorac Cardiovasc Surg. 1985;90:896–900.

    PubMed  CAS  Google Scholar 

  26. Menasché P, Kural S, Fauchet B, Lavergne A, Commin P, Bercot N, Touchot B, Georgiopoulos G, Piwnica A. Retrograde coronary sinus perfusion: a safe alternative for insuring cardioplegic delivery in aortic valve surgery. Ann Thorac Surg. 1982;34:647–58.

    Article  PubMed  Google Scholar 

  27. Shiki K, Masuda M, Yonenaga K, Asou T, Tokunaga K. Myocardial distribution of retrograde flow through the coronary sinus of the excised normal canine heart. Ann Thorac Surg. 1986;41:265–71.

    Article  PubMed  CAS  Google Scholar 

  28. Stirling MC, McClanahan B, Shott RJ. Distribution of cardioplegic solutions infused antegradely and retogradely in normal canine hearts. J Thorac Cardiovasc Surg. 1989;98:1066–76.

    PubMed  CAS  Google Scholar 

  29. Hochberg MS, Austin WG. Selective retrograde coronary venous perfusion. Ann Thorac Surg. 1980;29:578–88.

    Article  PubMed  CAS  Google Scholar 

  30. Caldarone CA, Krukenkamp IB, Misare BD, Levitsky S. Perfusion deficits with retrograde warm blood cardioplegia. Ann Thorac Surg. 1994;57:403–6.

    Article  PubMed  CAS  Google Scholar 

  31. Salerno TA, Houck JP, Barrozo CA, Panos A, Christakis GT, Abel JG, Lichtenstein SV. Retrograde continuous warm blood cardioplegia: a new concept in myocardial protection. Ann Thorac Surg. 1991;51:245–7.

    Article  PubMed  CAS  Google Scholar 

  32. Menasché P, Peynet J, Touchot B, Aziz M, Haydar S, Perez G, Veyssié L, Montenegro J, Bloch G, Piwnica A. Normothermic cardioplegia: is aortic cross-clamping still synonymous of myocardial ischemia? Ann Thorac Surg. 1992;54:472–8.

    Article  PubMed  Google Scholar 

  33. Horsley WS, Whitlark JD, Hall JD, Gott JP, Chih P, Huang AH, Park Y, Jones DP, Guyton RA. Revascularization for acute regional infarct: superior protection with warm blood cardioplegia. Ann Thorac Surg. 1993;56:1228–38.

    Article  PubMed  CAS  Google Scholar 

  34. Matsuura H, Lazar HL, Yang SM, Rivers S, Treanor PR, Shemin RJ. Detrimental effects of interrupting warm blood coronary revascularization. J Thorac Cardiovasc Surg. 1993;106:357–61.

    PubMed  CAS  Google Scholar 

  35. Clafiore AM, Teodori G, Mezzetti A, Bosco G, Verna AM, Giammarco GD, Lapenna D. Intermittent antegrade warm blood cardioplegia. Ann Thorac Surg. 1995;59:398–402.

    Article  Google Scholar 

  36. Aldea GS, Hou D, Fonger JD, Shemin RJ. Inhomogeneous and complementary antegrade and retrograde delivery of cardioplegic solution in the absence of coronary artery obstruction. J Thorac Cardiovasc Surg. 1994;107:499–504.

    PubMed  CAS  Google Scholar 

  37. Backberg GD, Salerno TA. Simultaneous antegrade/retrograde cardioplegia: experimental/clinical study of a new cardioprotective technique. In: Salerno TA, editor. Warm heart surgery. London: Arnold, a member of the Hodder Headline Group; 1995. p. 90–8.

  38. Teoh KH, Christakis GT, Weisel RD. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia (hot shot). J Thorac Cardiovasc Surg. 1986;91:888–95.

    PubMed  CAS  Google Scholar 

  39. Rosenkranz ER, Okamoto F, Buckberg GD, Vinten-Johansen J, Robertson JM, Bugyi HI. The safety of prolonged aortic clamping with blood cardioplegia. II. Glutamate enrichment in energy depleted hearts. J Thorac Cardiovasc Surg. 1984;88:402–10.

    PubMed  CAS  Google Scholar 

  40. Rosenkranz ER, Buckberg GD, Laks H, Mulder DG. Warm induction of cardioplegia with glutamate enriched blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intraaortic balloon support. J Thorac Cardiovasc Surg. 1983;86:507–18.

    PubMed  CAS  Google Scholar 

  41. Allen BS, Buckberg GD, Schwaiger M, Yeatman L, Tillisch J, Kawata N, Messenger J, Lee C. Studies of controlled reperfusion after Ischemia. XVI. Early recovery of regional wall motion in patients following surgical revascularization after eight hours of acute coronary occlusion. J Thorac Cardiovasc Surg. 1986;92:636–48.

    PubMed  CAS  Google Scholar 

  42. Laks H, Rosenkranz E, Buckberg GD. Surgical treatment of cardiogenic shock after myocardial infarction. Circulation. 1986;74(Suppl III):16–22.

    Google Scholar 

  43. Lichtenstein SV, Ashe KA, el Dalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg. 1991;101:269–74.

    PubMed  CAS  Google Scholar 

  44. Lichtenstein SV, Abel JG, Salerno TA. Warm heart surgery and results of operation for recent myocardial infarction. Ann Thorac Surg. 1991;52:455–60.

    Article  PubMed  CAS  Google Scholar 

  45. Yau TM, Weisel RD, Mickle DAG. Optimal delivery of blood cardioplegia. Circulation. 1991;84(Suppl III):380–8.

    Google Scholar 

  46. Yau TM, Ikonomidis JS, Weisel RD, Mickle DAG, Ivanov J, Mohabeer MK, Tumiati L, Carson S, Liu P. Ventricular function after normothermic versus hypothermic cardioplegia. J Thorac Cardiovasc Surg. 1993;105:833–44.

    PubMed  CAS  Google Scholar 

  47. Ikonomidis JS, Yau TM, Weisel RD, Hayashida N, Fu X, Comeda M, Ivanov J, Carson S, Mohabeer MK, Tumiati L, Mickle DAG. Optimal flow rates for retrograde warm cardioplegia. J Thorac Cardiovasc Surg. 1994;107:510–9.

    PubMed  CAS  Google Scholar 

  48. Hayashida N, Ikonomidis JS, Weisel RD, Shirai T, Ivanov J, Carson SM, Mohabeer MK, Tumiati LC, Mickle DAG. The optimal cardioplegic temperature. Ann Thorac Surg. 1994;58:961–71.

    Article  PubMed  CAS  Google Scholar 

  49. Buckberg GD. Update on techniques of myocardial protection. Ann Thorac Surg. 1995;60:805–14.

    Article  PubMed  CAS  Google Scholar 

  50. Menasché P, Fleury JP, Veyssié L, Le Dref O, Touchot B, Piwnica AH, Bloch G. Limitation of vasodilation associated with warm heart operation by a “Mini-cardioplegia” delivery technique. Ann Thorac Surg. 1993;56:1148–53.

    Article  PubMed  Google Scholar 

  51. El-Hamamsy I, Stevens LM, Pellerin M, Bouchard D, Pagé P, Carrier M, Perrault LP. A prospective randomized study of diluted versus non-diluted cardioplegia (minicardioplegia) in primary coronary artery bypass surgery. J Cardiovasc Surg. 2004;45:101–6.

    CAS  Google Scholar 

  52. Albacker TB, Chaturvedi R, Al Kindi AH, Al-Habib H, Al-Atassi T, de Varennes B, Lachapelle K. The effect of using microplegia on perioperative morbidity and mortality in elderly patients undergoing cardiac surgery. Interac Cardiovasc Thorac Surg. 2009;9:56–60.

    Google Scholar 

  53. Onorati F, Santini F, Dandale R, Ucci G, Pechlivanidis K, Menon T, Chiomonto B, Mazzucco A, Faggian G. “Polarizing” microplegia improves cardiac cycle efficiency after CABG for unstable angina. Int J Cardiol. 2012;. doi:10.1016/j.ijcard.2012.06.099.

    Google Scholar 

  54. Denis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23:1077–86.

    Article  Google Scholar 

  55. Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol. 1990;259:H1767–73.

    PubMed  CAS  Google Scholar 

  56. Yamamoto F, Manning AS, Braimbridge MV, Hearse DJ. Cardioplegia and slow calcium-channel blockers. Studies with verapamil. J Thorac Cardiovasc Surg. 1983;86:252–61.

    PubMed  CAS  Google Scholar 

  57. Karmazyn M. Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+ exchange. Am J Physiol. 1988;255:H608–15.

    PubMed  CAS  Google Scholar 

  58. Hendrikx M, Mubagwa K, Verdonck F, Overloop K, Van Hecke P, Vanstapel F, Van Lommel A, Verbeken E, Lauweryns J, Flameng W. New Na+-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resysnthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation. 1994;89:2787–98.

    Article  PubMed  CAS  Google Scholar 

  59. Koike A, Akita T, Hotta Y, Takeya K, Kodama I, Murase M, Abe T, Toyama J. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy. J Thorac Cardiovasc Surg. 1996;112:765–75.

    Article  PubMed  CAS  Google Scholar 

  60. Choy IO, Schepkin VD, Budinger TF, Obayashi DY, Young JN, DeCampli WM. Effects of specific sodium/hydrogen exchange inhibitor during cardioplegic arrest. Ann Thorac Surg. 1997;64:94–9.

    Article  PubMed  CAS  Google Scholar 

  61. Cox CS Jr, Sauer H, Allen SJ, Buja LM, Laine GA. Sodium/hydrogen-exchanger inhibition during cardioplegic arrest and cardiopulmonary bypass: an experimental study. J Thorac Cardiovasc Surg. 2002;123:959–66.

    Article  PubMed  CAS  Google Scholar 

  62. Castellá M, Buckberg GD, Tan Z. Blood cardioplegic protection in profoundly damaged hearts: role of Na+-H+ exchange inhibition during pretreatment or during controlled reperfusion supplementation. Ann Thorac Surg. 2003;75:1238–45.

    Article  PubMed  Google Scholar 

  63. Kevelaitis E, Qureshi AA, Mouas C, Marotte F, Kevelaitene S, Avkiran M, Menasché P. Na+/H+ exchange inhibition in hypertrophied myocardium subjected to cardioplegic arrest: an effective cardioprotective approach. Eur J Cardiothorac Surg. 2005;27:111–6.

    Article  PubMed  Google Scholar 

  64. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest. 1988;82:920–7.

    Article  PubMed  CAS  Google Scholar 

  65. Hori M, Kitakaze M, Sato H. Staged reperfusion attenuates myocardial stunning in dogs: role of acidosis during early reperfusion. Circulation. 1991;84:2135–45.

    Article  PubMed  CAS  Google Scholar 

  66. Harada K, Flankin A, Joohnson RG, Grossman W, Morgan JP. Acidemia and hypernatremia enhance postischemic recovery of excitation–contraction coupling. Circ Res. 1994;74:1197–209.

    Article  PubMed  CAS  Google Scholar 

  67. Ohashi T, Yamamoto F, Yamamoto H, Ichikawa H, Shibata T, Kawashima Y. Transient reperfusion with acidic solution affects postischemic functional recovery: studies in the isolated working rat heart. J Thorac Cardiovasc Surg. 1996;111(3):613–20.

    Article  PubMed  CAS  Google Scholar 

  68. Karmazyn M, Moffat MP. Role of Na+-H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res. 1993;27:915–24.

    Article  PubMed  CAS  Google Scholar 

  69. Boyce SW, Bartels C, Bolli R, Chaitman B, Chen C, Chi E, Jessel A, Kereiakes D, Knight J, Thulin L, Theroux P, on behalf of GUARDIAN Study investigators. Impact of sodium-hydrogen exchange inhibition by cariporide on death or myocardial infarction in high-risk CABG surgery patients: results of the CABG surgery cohort of the GUARDIAN study. J Thorac Cardiovasc Surg. 2003;126:420–7.

    Article  PubMed  CAS  Google Scholar 

  70. Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasché P, Myers ML, Nicolau J, Simoons M, Thulin L, Weisel RD, on behalf of the EXPEDITION Study investigators. Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg. 2008;85:1261–70.

    Article  PubMed  Google Scholar 

  71. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia–reperfusion damage. Circ Res. 1991;69:571–81.

    Article  PubMed  CAS  Google Scholar 

  72. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol. 1993;265:H1809–18.

    PubMed  CAS  Google Scholar 

  73. Lawton JS, Harrington GC, Allen CT, Hsia PW, Damiano RJ Jr. Myocardial protection with pinacidil cardioplegia in the blood-perfused heart. Ann Thorac Surg. 1996;61:1680–8.

    Article  PubMed  CAS  Google Scholar 

  74. Sato T, Sasaki N, O’Rourke B, Marbán E. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol. 2000;35:514–8.

    Article  PubMed  CAS  Google Scholar 

  75. Steensrud T, Jakobsen Ø, Ytrehus K, Sørlie DG. Contractile recovery of heart muscle after hypothermic hypoxia is improved by nicorandil via mitochondrial KATP channels. Eur J Cardiothorac Surg. 2006;30:256–62.

    Article  PubMed  Google Scholar 

  76. Steensrud T, Nordhaug OP, Elvences C, Korvald C, Sørlie DG. Superior myocardial protection with nicorandil cardioplegia. Eur J Cardiothorac Surg. 2003;23:670–7.

    Article  PubMed  CAS  Google Scholar 

  77. Kobayashi S, Yoshikawa Y, Sakata S, Takenaka C, Hagihara H, Ohga Y, Abe T, Taniguchi S, Takaki M. Left ventricular mechanoenergetics after hyperpolarized cardioplegic arrest by nicorandil and after depolarized cardioplegic arrest by KCl. Am J Physiol. 2004;287:H1072–80.

    CAS  Google Scholar 

  78. Steensrud T, Müller S, Endresen PC, Sørlie DG. Clinical testing of nicorandil supplemented normokalemic cardioplegic solution. Interact Cardiovasc Thorac Surg. 2006;5:521–5.

    Article  PubMed  Google Scholar 

  79. Yamamoto S, Yamada T, Kotake Y, Takeda J. Cardioprotective effects of nicorandil in patients undergoing on-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2008;22:548–53.

    Article  PubMed  CAS  Google Scholar 

  80. Opie LH. Receptors and signal transduction. In: Opie LH, editor. The heart, physiology, from cell to circulation, 3rd edition. Philadelphia: Lippincott-Raven Publishers; 1998. p. 173–207.

  81. Schubert T, Vetter H, Owen P, Reichart B, Opie LH. Adenosine cardioplegia. J Thorac Cardiovasc Surg. 1989;98:1057–65.

    PubMed  CAS  Google Scholar 

  82. Mentzer RM Jr, Birjinuk V, Khuri S, Lowe JE, Rahko PS, Weisel RD, Welions HA, Barker ML, Lasley RD, for the Adenosine Myocardial Protection Investigators. Adenosine myocardial protection. Preliminary results of a phase II clinical trial. Ann Surg. 1999;229:643–50.

    Article  PubMed  Google Scholar 

  83. Liu R, Xing J, Miao N, Li W, Liu W, Lai YQ, Luo Y, Ji B. The myocardial protective effect of adenosine as an adjunct to intermittent blood cardioplegia during open heart surgery. Eur J Cardiothoracic Surg. 2009;36:1018–23.

    Article  Google Scholar 

  84. Ahlsson A, Sobrosa C, Kaijser L, Jansson E, Bomfim V. Adenosine in cold blood cardioplegia. A placebo-controlled study. Interact Cardiovasc Thorac Surg. 2011;14:48–55.

    Article  PubMed  Google Scholar 

  85. Dobson GP, Jones MW. Adenosine and lidocaine: a new concept in nonpolarizing surgical myocardial arrest, protection and preservation. J Thorac Cardiovasc Surg. 2004;127:794–805.

    Article  PubMed  CAS  Google Scholar 

  86. Sloots KL, Vinten-Johansen J, Dobson GP. Warm nondepolarizing adenosine and lidocaine cardioplegia: continuous versus intermittent delivery. J Thorac Cardiovasc Surg. 2007;133:1171–8.

    Article  PubMed  CAS  Google Scholar 

  87. Corvera JS, Kin H, Dobson GP, Kerendi F, Halkos ME, Katzmark S, Payne CS, Zhao ZQ, Guyton RA, Vinten-Johansen J. Polarized arrest with warm or cold adenosine/lidocaine blood cardioplegia is equivalent to hypothermic potassium blood cardioplegia. J Thorac Cardiovasc Surg. 2005;129:599–606.

    Article  PubMed  Google Scholar 

  88. Sloots KL, Dobson GP. Normokalemic adenosine–lidocaine cardioplegia: importance of maintaining a polarized myocardium for optimal arrest and reanimation. J Thorac Cardiovasc Surg. 2010;139:1576–86.

    Article  PubMed  CAS  Google Scholar 

  89. Shi W, Jiang R, Dobson GP, Granfeldt A, Vinten-Johansen J. The nondepolarizing, normokalemic cardioplegia formulation adenosine–lidocaine (adenocaine) exerts anti-neutrophil effects by synergistic actions of its components. J Thorac Cardiovasc Surg. 2012;143:1167–75.

    Article  PubMed  CAS  Google Scholar 

  90. Fallouh HB, Bardswell SC, McLatchie LM, Shattock MJ, Chambers DJ, Kentish JC. Esmolol cardioplegia: the cellular mechanism of diastolic arrest. Cardiovasc Res. 2010;87:552–60.

    Article  PubMed  CAS  Google Scholar 

  91. Hohnloser SH, Meinertz T, Klingenheben T, Sydow B, Just H. Usefulness of esmolol in unstable angina pectoris. European Esmolol Study Group. Am J Cardiol. 1991;67:1319–23.

    Article  PubMed  CAS  Google Scholar 

  92. Warters RD, Allen SJ, Davis KL, Geissler HJ, Bischoff I, Mutschler E, Mehlhorn U. β-Blockade as an alternative to cardioplegic arrest during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:961–6.

    Article  PubMed  CAS  Google Scholar 

  93. Pirk J, Kellovský P. An alternative to cardioplegia. Ann Thorac Surg. 1995;60:464–5.

    Article  PubMed  CAS  Google Scholar 

  94. Kuhn-Régnier F, Natour E, Dhein S, Dapunt O, Geissler HJ, LaRosé K, Görg C, Mehlhorn U. Beta-blockade versus Buckberg blood-cardioplegia in coronary bypass operation. Eur J Cardiothorac Surg. 1999;15:67–74.

    Article  PubMed  Google Scholar 

  95. Scorsin M, Mebazaa A, Attar NA, Medini B, Callebert J, Raffoul R, Ramadan R, Maillet JM, Ruffenach A, Simoneau F, Nataf P, Payen D, Lessana A. Efficacy of esmolol as a myocardial protective agent during continuous retrograde blood cardioplegia. J Thorac Cardiovasc Surg. 2003;125:1022–9.

    Article  PubMed  CAS  Google Scholar 

  96. Borowski A, Raji MR, Eichstaedt HC, Schickendantz S, Korb H. Myocardial protection by pressure- and volume-controlled continuous hypothermic coronary perfusion in combination with esmolol and nitroglycerine for correction of congenital heart defects in pediatric risk patients. Eur J Cardiothoracic Surg. 1998;14:243–9.

    Article  CAS  Google Scholar 

  97. Bessho R, Chambers DJ. Myocardial protection with oxygenated esmolol cardioplegia during prolonged normothermic ischemia in the rat. J Thorac Cardiovasc Surg. 2002;124:340–51.

    Article  PubMed  CAS  Google Scholar 

  98. Fujii M, Chambers DJ. Cardioprotection with esmolol cardioplegia: efficacy as a blood-based solution. Eur J Cardiothoracic Surg. 2012;. doi:10.1093/ejcts/ezs365.

    Google Scholar 

  99. Ede M, Ye J, Gregorash L, Summers R, Pargaonkar S, LeHouerou D, Lessana A, Salerno TA, Deslauriers R. β-Blocker-induced cardiac arrest for normothermic cardiac operations. Ann Thorac Surg. 1997;63:721–7.

    Article  PubMed  CAS  Google Scholar 

  100. Fannelop T, Dahle GO, Matre K, Moen CA, Mongstad A, Eliassen F, Segadal L, Grong K. Esmolol before 80 min of cardiac arrest with oxygenated cold blood cardioplegia alleviates systolic dysfunction. Eur J Cardiothorac Surg. 2008;33:9–17.

    Article  PubMed  Google Scholar 

  101. Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone ED, Kirklin JW. Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med. 1981;304:497–503.

    Article  PubMed  CAS  Google Scholar 

  102. Kirklin JK, Westaby S, Blackstone ED, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;86:845–57.

    PubMed  CAS  Google Scholar 

  103. Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55:552–9.

    Article  PubMed  CAS  Google Scholar 

  104. Chello M, Mastroroberto P, Rossana R, Ascione R, Pantaleo D, Amicis VD. Complement and neutrophil activation during cardiopuklmonary bypass. A randomized comparison of hypothermic and normothermic circulation. Eur J Cardiothorac Surg. 1997;11:162–8.

    Article  PubMed  CAS  Google Scholar 

  105. Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Role of the terminal complement components and inhibition by anti-C5 therapy. Circulation. 1998;97:2259–67.

    Article  PubMed  CAS  Google Scholar 

  106. Carrier M, Ménasché P, Levy JH, Taylor KM, Haverich A, Chen JC, Sheman SK, Van de Werf F, Van der Laan M, Todaro TG, Adams PX, Verrier ED. Inhibition of complement activation by pexelizumab reduces death in patients undergoing combined aortic valve replacement and coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2006;131:352–6.

    Article  PubMed  CAS  Google Scholar 

  107. Testa L, Van Gaal WJ, Bhindi R, Biondi-zoccai GGL, Abbate A, Agostoni P, Porto I, Andreotti F, Crea F, Banning AP. Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J Thorac Cardiovasc Surg. 2008;136:884–93.

    Article  PubMed  CAS  Google Scholar 

  108. Sawa Y, Matsuda H, Shimazaki Y, Kaneko M, Nishimura M, Amemiya A, Sakai K, Nakano S. Evaluation of leukocyte-depleted terminal blood cardioplegic solution in patients undergoing elective and emergency coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1994;108:1125–31.

    PubMed  CAS  Google Scholar 

  109. Palatianos GM, Balentine G, Papadakis EG, Triantafillou CD, Vassili MI, Lidoriki A, Dinopoulos A, Astras GM. Neutrophil depletion reduces myocardial reperfusion morbidity. Ann Thorac Surg. 2004;77:956–61.

    Article  PubMed  Google Scholar 

  110. Liakopoulos OJ, Choi YH, Haldenwang PL, Strauch J, Wittwer T, Dörge H, Stamm C, Wassmer G, Wahlers T. Impact of preoperative statin therapy on adverse postoperative outcomes in patients undergoing cardiac surgery: a meta-analysis of over 30000 patients. Eur Heart J. 2008;29:1548–59.

    Article  PubMed  Google Scholar 

  111. Braathen B, Jeppsson A, Scherstén H, Hagen OM, Vengen Ø, Rexius H, Lepore V, Tønnessen T. One single dose of histidine–tryptophan–ketoglutarate solution gives equally good myocardial protection in elective mitral valve surgery as repetitive cold blood cardioplegia: a prospective randomized study. J Thorac Cardiovasc Surg. 2011;141:995–1001.

    PubMed  CAS  Google Scholar 

  112. Sezai A, Wakui S, Akiyama K, Hata M, Yoshitake I, Unosawa S, Shiono M. Myocardial protective effect of human atrial natriuretic peptide in cardiac surgery. “hANP shot” in clinical safety trial. Circ J. 2011;75:2144–50.

    Article  PubMed  CAS  Google Scholar 

  113. Osaka S, Sezai A, Wakui S, Shimura K, Taniguchi Y, Hata M, Shiono M. Experimental investigation of “hANP shot” using human atrial natriuretic peptide for myocardial protection in cardiac surgery. J Cardiol. 2012;60:66–71.

    Article  PubMed  Google Scholar 

  114. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  PubMed  CAS  Google Scholar 

  115. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.

    PubMed  CAS  Google Scholar 

  116. Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993;342:276–7.

    Article  PubMed  CAS  Google Scholar 

  117. Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart. 1997;77:314–8.

    PubMed  CAS  Google Scholar 

  118. Walsh SR, Tang TY, Kullar P, Jenkins DP, Dutka DP, Gaunt ME. Ischaemic preconditioning during cardiac surgery: systematic review and meta-analysis of perioperative outcomes in randomised clinical trials. Eur J Cardiothorac Surg. 2008;34:985–94.

    Article  PubMed  Google Scholar 

  119. Apostolakis E, Baikoussis NG, Papakonstantinou NA. The role of myocardial ischaemic preconditioning during beating heart surgery: biological aspect and clinical outcome. Interact Cardiovasc Thorac Surg. 2012;14:68–71.

    Article  PubMed  Google Scholar 

  120. Przylenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘Preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.

    Article  Google Scholar 

  121. Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance. Reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997;96:1641–6.

    Article  PubMed  CAS  Google Scholar 

  122. Günaydin B, Çakici İ, Soncul H, Kalaycioğlu S, Çevik C, Sancak B, Knzik İ, Karadenizli Y. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol Res. 2000;41:493–6.

    Article  PubMed  Google Scholar 

  123. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmit MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106:2881–3.

    Article  PubMed  CAS  Google Scholar 

  124. Cheung MMH, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery. First clinical application in humans. J Am Coll Cardiol. 2006;47:2277–82.

    Article  PubMed  Google Scholar 

  125. Venugopal V, Hausenloy DJ, Ludman A, Salvo CD, Kolvekar S, Yap J, Lawrence D, Bognolo J, Yellon DM. Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomized controlled trial. Heart. 2009;95:1567–71.

    Article  PubMed  CAS  Google Scholar 

  126. Hong DM, Jeon Y, Lee CS, Kim HJ, Lee JM, Bahk JH, Kim KB, Hwang HY. Effects of remote ischemic preconditioning with postconditioning in patients undergoing off-pump coronary artery bypass surgery. Randomized controlled trial. Circ J. 2012;76:884–90.

    Article  PubMed  CAS  Google Scholar 

  127. Marczak J, Nowicki R, Kulbacka J, Saczko J. Is remote ischaemic preconditioning of benefit to patients undergoing cardiac surgery? Interact Cardiovasc Thorac Surg. 2012;14:634–9.

    Article  PubMed  Google Scholar 

  128. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    PubMed  CAS  Google Scholar 

  129. Shinohara G, Morita K, Nagahori R, Koh Y, Kinouchi K, Abe T, Hashimoto K. Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J Thoracic Cardiovasc Surg. 2011;142:926–32.

    Article  Google Scholar 

  130. Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res. 2006;70:200–11.

    Article  PubMed  CAS  Google Scholar 

  131. Li B, Chen R, Huang R, Luo W. Clinical benefit of cardiac ischemic postconditioning in corrections of tetralogy of Fallot. Interact Cardiovasc Thorac Surg. 2009;8:17–21.

    Article  PubMed  Google Scholar 

  132. Luo W, Li B, Chen R, Huang R, Lin G. Effects of ischemic postconditioning in adult valve replacement. Eur J Cardiothorac Surg. 2012;14:634–9.

    Google Scholar 

  133. Hagége AA, Marolleau JP, Vilquin JT, Alhéritière A, Peyrard S, Duboc D, Abergel E, Messas E, Mousseaux E, Schwartz K, Desnos M, Menasché P. Skeletal myoblast transplantation in ischemic heart failure. Long-term follow-up of the first phase I cohort of patients. Circulation. 2006;114(Suppl I):I-108–13.

    Article  Google Scholar 

  134. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagége AA. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Circulation. 2008;117:1189–200.

    Article  PubMed  Google Scholar 

  135. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsumiya A, Saito A, Shimizu T, Okano T. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42:181–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Yamamoto.

Additional information

The review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Yamamoto, F. Myocardial protection in cardiac surgery: a historical review from the beginning to the current topics. Gen Thorac Cardiovasc Surg 61, 485–496 (2013). https://doi.org/10.1007/s11748-013-0279-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-013-0279-4

Keywords

Navigation