Consumer resistance to innovation—a behavioral reasoning perspective

Abstract

Behavioral research shows that reasons for and reasons against adopting innovations differ qualitatively, and they influence consumers’ decisions in dissimilar ways. This has important implications for theorists and managers, as overcoming barriers that cause resistance to innovation calls for marketing approaches other than promoting reasons for adoption of new products and services. Consumer behavior frameworks in diffusion of innovation (DOI) studies have largely failed to distinctly account for reasons against adoption. Indeed, no study to date has tested the relative influence of adoption and resistance factors in a single framework. This research aims to address this shortcoming by applying a novel consumer behavior model (i.e., behavioral reasoning theory) to test the relative influence of both reasons for and, importantly, reasons against adoption in consumers’ innovation adoption decisions. Based on two empirical studies, one with a product and a second with a service innovation, findings demonstrate that behavioral reasoning theory provides a suitable framework to model the mental processing of innovation adoption. Implications for managers and researchers are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Agarwal, S., & Teas, R. K. (2001). Perceived value: mediating role of perceived risk. J Mark Theory Pract, 9(4), 1–14.

    Google Scholar 

  2. Ajzen, I. (1991). The theory of planned behaviour. Organ Behav Hum Decis Process, 50, 179–211.

    Article  Google Scholar 

  3. Antioco, M., & Kleijnen, M. (2010). Consumer adoption of technological innovations: effects of psychological and functional barriers in a lack of content versus a presence of content situation. Eur J Mark, 44(11/12), 1700–1724.

    Article  Google Scholar 

  4. Arts, J. W. C., Frambach, R. T., & Bijmolt, T. H. (2011). Generalizations on consumer innovation adoption: a meta-analysis on drivers of intention and behavior. Int J Res Mark, 28(2), 134–144.

    Article  Google Scholar 

  5. Bagozzi, R. P. (1992). The self-regulation of attitudes, intentions, and behavior. American Sociological Association: Social Psychology Quarterly.

    Google Scholar 

  6. Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. J Acad Mark Sci, 40(1), 8–34.

    Article  Google Scholar 

  7. Bagozzi, R. P., Gürnao-Canli, Z., & Priester, J. (2002). The social psychology of consumer behavior. Buckingham: Open University Press.

    Google Scholar 

  8. Bartl, M., Füller, J., Mühlbacher, H., & Ernst, H. (2012). A Manager’s perspective on virtual customer integration for new product development. J Prod Innov Manag, 29(6), 1031–1046.

    Article  Google Scholar 

  9. Berchicci, L., & Bodewes, W. (2005). Bridging environmental issues with new product development. Bus Strateg Environ, 14(5), 272–85.

    Article  Google Scholar 

  10. Chazidakis, A., & Lee, M. S. W. (2013). Anti-consumption as the study of reasons against. J Macromarketing, 33(3), 190–203.

    Article  Google Scholar 

  11. Chen, F. F., Sousa, K. H., & West, S. G. (2005). Teacher’s corner: testing measurement invariance of second-order factor models. Struct Aequationes Model A Multidiscip J, 12(3), 37–41.

    Google Scholar 

  12. Claudy, M. C., Peterson, M., & O’Driscoll, A. (2013). Understanding the attitude-behavior Gap for renewable energy systems using behavioral reasoning theory. J Macromarketing, 33(4), 273–287.

    Article  Google Scholar 

  13. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Manag Inf Syst Q, 13, 319–339.

    Article  Google Scholar 

  14. Day, R. L., & Herbig, P. A. (1992). Customer acceptance: the key to successful introductions of innovations. Mark Intell Plan, 10(1), 4–15.

    Article  Google Scholar 

  15. Dholakia, U. M. (2001). A motivational process model of product involvement and consumer risk perception. Eur J Mark, 35(11/12), 1340–60.

    Article  Google Scholar 

  16. Eagly, A. H., & Chaiken, S. (1998). Attitude structure and function. In D. T. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (pp. 269–322). New York: McGraw-Hill.

    Google Scholar 

  17. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Philosophy rhetoric. Reading, MA: Addison-Wesley.

    Google Scholar 

  18. Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error (pp. 39–50). XVI (February): Journal of Marketing Research.

    Google Scholar 

  19. Garcia, R., Bardhi, F., & Friedrich, C. (2007). Overcoming consumer resistance to innovation. MIT Sloan Manag Rev, 48(4).

  20. Gatignon, H., & Robertson, T. S. (1989). Technology Diffusion: An Empirical Test of Competitive Effects, Journal of Marketing,53(January), 35–49

  21. Gerbing, D., & Anderson, J. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, XXV (May), 186–193.

  22. Gourville, J. T. (2006). Eager sellers and stony buyers: understanding the psychology of new-product adoption. Harv Bus Rev, 84(6).

  23. Gregan-Paxton, J., & John, D. R. (1997). Consumer learning by analogy: a model of internal knowledge transfer. J Consum Res, 24(3), 266–84.

    Article  Google Scholar 

  24. Gregan-Paxton, J., & Moreau, P. (2003). How Do consumers transfer existing knowledge? a comparison of analogy and categorization effects. J Consum Psychol, 13(4), 422–430.

    Article  Google Scholar 

  25. Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation : a review and agenda for marketing science. Mark Sci, 25(6).

  26. Im, S., Mason, C. H., & Houston, M. B. (2007). Does innate consumer innovativeness relate to new product/service adoption behavior? the intervening role of social learning via vicarious innovativeness. J Acad Mark Sci, 35(1), 63–75.

    Article  Google Scholar 

  27. Jackson, T. (2005). Motivating sustainable consumption. London: A Review of Evidence on Consumer Behavior and Behavioral Change. Report to the. Sustainable Development Research Network.

    Google Scholar 

  28. Janis, I. L., & Mann, L. (1977). Decision making: a psychological analysis of conflict, choice and commitment. New York: Free Press.

    Google Scholar 

  29. Janz, N. K., & Becker, M. H. (1984). The health belief model: a decade later. Health Educ Behav, 11(1), 1–47.

    Article  Google Scholar 

  30. John, A., & Klein, J. (2003). The boycott puzzle: consumer motivations for purchase sacrifice. Manag Sci, 49(9), 1196–1209.

    Article  Google Scholar 

  31. Karahanna, E. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS Q, 30(4), 781–804.

    Google Scholar 

  32. Kleijnen, M., Lee, N., & Wetzels, M. (2009). An exploration of consumer resistance to innovation and its antecedents. J Econ Psychol, 30(3), 344–357.

    Article  Google Scholar 

  33. Kulviwat, S., Bruner, G. C., & Al-Shuridah, O. (2009). The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption. J Bus Res, 62(7), 706–712.

    Article  Google Scholar 

  34. Kunda, Z. (1990). The case for motivated reasoning. Psychol Bull, 108(3), 480–98.

    Article  Google Scholar 

  35. Kvale, S. (1996). Interviews: An Introduction to Qualitative Research Interviewing. Sage Publications

  36. Langerak, F., & Verhoef, P. C. (2001). Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. J Retail Consum Serv, 8(5), 275–285.

    Article  Google Scholar 

  37. Laukkanen, T., Sinkkonen, S., Kivijarvi, M., & Laukkanen, P. (2007). Innovation resistance among mature consumers. J Consum Mark, 24(7), 419–27.

    Article  Google Scholar 

  38. Lee, T. W., Mitchell, T. R., Holtom, B. C., McDaniel, L. S., & Hill, J. W. (1999). The unfolding model of voluntary turnover: a replication and extension. Acad Manag J, 42(4), 450–462.

    Article  Google Scholar 

  39. Lu, J.-L., Chou, H.-Y., & Ling, P.-C. (2009). Investigating passengers’ intentions to use technology-based self check-in services. Transp Res Part E Logist Transp Rev, 45(2), 345–356.

    Article  Google Scholar 

  40. Marsh, H. W., & Hocevar, D. (1985). Application of confirmatory factor analysis to the study of self-concept: First- and higher order factor models and their invariance across groups. Psychol Bull, 97(3), 562–582.

    Article  Google Scholar 

  41. McAlister, L., & Pessemier, E. (1982). Variety seeking behavior: an interdisciplinary review. J Consum Res, 9(3), 311–322.

    Article  Google Scholar 

  42. Molesworth, M., & Suortti, J.-P. (2002). Buying cars online: the adoption of the Web for high-involvement, high-cost purchases. J Consum Behav, 2(2), 155–168.

    Article  Google Scholar 

  43. Moore, G. A. (1999). Crossing the Chasm. Marketing and Selling High-Tech Products to Mainstream Customer (revised edition). New York: HarperCollins

  44. Moreau, C., Lehmann, D., & Markman, A. (2001). Entrenched knowledge structures and consumer response to new products. Journal of Marketing Research, XXXVIII

  45. Nowak, A., Vallacher, R. R., Tesser, A., & Borkowski, W. (2000). Society of self: the emergence of collective properties in self-structure. Psychol Rev, 107(1), 39–61.

    Article  Google Scholar 

  46. Nyrud, A. Q., Roos, A., & Sande, J. B. (2008). Residential bioenergy heating: a study of consumer perceptions of improved woodstoves. Energy Policy, 36(8), 3169–3176.

    Article  Google Scholar 

  47. Oreg, S. (2003). Resistance to change: developing an individual differences measure. J Appl Psychol, 88(4), 680–693.

    Article  Google Scholar 

  48. Parasuraman, A., & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain: a research agenda. J Acad Mark Sci, 28(1), 168–174.

    Article  Google Scholar 

  49. Pennington, N., & Hastie, R. (1988). Explanation-based decision making: effects of memory structure on judgment. J Exp Psychol Learn Mem Cogn, 14, 521–533.

    Article  Google Scholar 

  50. Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine internet usage: the role of perceived access barriers and demographics. J Bus Res, 59(9), 999–1007.

    Article  Google Scholar 

  51. Posavac, S. S., Brakus, J. J., & Herzenstein, M. (2007). Adoption of New and really New products: the effects of self-regulation systems and risk salience. J Mark Res, 44(2), 251–260.

    Article  Google Scholar 

  52. Prochaska, J. O., Velicer, W. F., Rossi, J. S., Goldstein, M. G., Markus, B. H., & Rakowski, W. (1994). Stages of change and decisional balance model for 12 problem behaviors. Health Psychol, 13, 39–46.

    Article  Google Scholar 

  53. Ram, S. (1987). A model of innovation resistance. Advances in Consumer Research, 14(1), 208–12.

  54. Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: the marketing problem and its solution. J Consum Mark, 6(2), 5–14.

    Article  Google Scholar 

  55. Reinders, M. J., Dabholkar, P. A., & Frambach, R. T. (2008). Consequences of forcing consumers to Use technology-based self-service. J Serv Res, 11(2), 107–123.

    Article  Google Scholar 

  56. Rogers, E. M. (1962). Diffusion of Innovations. Free Press of Glencoe

  57. Schwartz, S. H. (2006). Basic human values : an overview basic human values : theory, methods, and applications introduction to the values theory. Appl Psychol, 48(1), 49–71.

    Google Scholar 

  58. Schwarz, N., & Ernst, A. (2008). Agent-based modelling of the diffusion of environmental innovations - an empirical approach. Technol Forecast Soc Chang, 76(4), 497–511.

    Article  Google Scholar 

  59. Sheth, J. N. (1981). Psychology of innovation resistance. Res Mark, 4, 273–282.

    Google Scholar 

  60. Snyder, M. (1992). Motivational foundations of behavioral confirmation. In M. P. Zanna (Eds.), Advances in Experimental Social Psychology (pp. 67–114). San Dieg, CA.: Academic Press.

  61. Stone, R. N., & Grønhaug, K. (1993). Perceived risk: further considerations for the marketing discipline. Eur J Mark, 27(3), 39–50.

    Article  Google Scholar 

  62. Sutton, S. (2004). Determinants of Health Related Behaviors: Theoretical and Methodological issues. In: The Sage Handbook of Health Psychology, Stephen R. Sutton, Andrew S. Baum and Marie Johnston, eds. London, UK: Sage, 94–126.

  63. Thaler, R. H. (1999). Mental accounting matters. J Behav Decis Mak, 12(3), 183–206.

    Article  Google Scholar 

  64. Thomas, J. B., Clark, S. M., & Gioia, D. A. (1993). Strategic sensemaking and organizational performance. Linkages among scanning Manag, 36(2), 239–70.

    Google Scholar 

  65. Tornatzky, L. G. & K. J. Klein (1982). Innovation characteristics and innovation adoption–implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28–45.

  66. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185(4157), 1124–31.

    Article  Google Scholar 

  67. Venkatesh, V., & Brown, S. (2001). A longitudinal investigation of personal computers in homes: adoption determinants and emerging challenges. MIS Q, 25(1), 71–102.

    Article  Google Scholar 

  68. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology. Toward a Unified View MIS Quarterly, 27(3), 425–478.

    Google Scholar 

  69. Westaby, J. D. (2005). Behavioral reasoning theory : identifying new linkages underlying intentions and behavior. Organ Behav Hum Decis Process, 98, 97–120.

    Article  Google Scholar 

  70. Westaby, J. D., & Fishbein, M. (1996). Factors underlying behavioural choice: testing a new reasons theory approach. J Appl Soc Psychol, 13, 1307–1323.

    Article  Google Scholar 

  71. Westaby, J. D., Probst, T. M., & Lee, B. C. (2010). Leadership decision-making: a behavioral reasoning theory analysis. Leadersh Q, 21(3), 481–495.

    Article  Google Scholar 

  72. Wood, S. L., & Moreau, C. P. (2006). From fear to loathing ? How emotion Infiuences the evaluation and early use of innovations. J Mark, 70(July), 44–57.

    Article  Google Scholar 

  73. Wu, J., & Wang, S. (2005). What drives mobile commerce ? an empirical evaluation of the revised technology acceptance model. Information Manag, 42, 719–729.

    Article  Google Scholar 

  74. Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehicles: an agent-based modeling approach. J Prod Innov Manag, 28(2), 152.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marius C. Claudy.

Appendix

Appendix

Table 8 Measurement instrument: Study 1 (micro wind turbines)
Table 9 Measurement instrument: Study 2 (car sharing)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Claudy, M.C., Garcia, R. & O’Driscoll, A. Consumer resistance to innovation—a behavioral reasoning perspective. J. of the Acad. Mark. Sci. 43, 528–544 (2015). https://doi.org/10.1007/s11747-014-0399-0

Download citation

Keywords

  • Adoption of innovation
  • Resistance to innovation
  • Behavioral reasoning theory
  • Consumer behavior