Skip to main content
Log in

Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The esterification of some natural antioxidants such as cinnamic acid derivatives and ascorbic acid in non-aqueous media, catalyzed by immobilized lipases from Candida antarctica and Rhizomucor miehei, was investigated. The alcohol chain length affected the rate of esterification of cinnamic acids by both lipases. Higher reaction rates were observed when the esterification was carried out with medium- or long-chain alcohols. The rate also depended on aromatic acid structure. The reactivity of the carboxylic function of the cinnamic acids was affected by electron-donating substituents in the aromatic ring. Higher yields were observed for the esterification of p-hydroxyphenylacetic acid (97%) catalyzed by C. antarctica lipase and for the esterification of cinnamic acid (59%) catalyzed by R. miehei lipase. Candida antarctica lipase was more suitable for producing ascorbic acid fatty esters, catalyzing with a relatively high yield (up to 65% within 24 h) the regioselective esterification of ascorbic acid with various fatty acids in 2-methyl-2-propanol. The reaction rate and yield depended on the fatty acid chain length and on the molar ratio of reactants. All ascorbic acid fatty esters produced by this procedure exhibited a significant antioxidant activity in a micellar substrate composed of linoleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherwin, E.R., Antioxidants for Food Fats and Oils, J. Am. Oil. Chem. Soc. 49:468–472 (1972).

    Article  CAS  Google Scholar 

  2. Kochhar, S.P., and J.B. Rossell, Detection, Estimation and Evaluation of Antioxidants in Food Systems, in Food Antioxidants, edited by B.J.F. Hudson, Elsevier Science Publishers, London, 1990, pp. 19–22.

    Google Scholar 

  3. Pratt, D.E., and B.J.F. Hudson, Natural Antioxidants Not Exploited Commercially, in Food Antioxidants, edited by B.J.F. Hudson, Elsevier Science Publishers, London, 1990, p. 171.

    Google Scholar 

  4. Shahidi, F., P.K. Janitha, and P.D. Wanasundara, Phenolic Antioxidants, Crit. Rev. Food Sci. Nutr. 32:67–75 (1992).

    Article  CAS  Google Scholar 

  5. Schuler, P., Natural Antioxidants Exploited Commercially, in Food Antioxidants, edited by B.J.F. Hudson, Elsevier Science Publishers, London, 1990, pp. 113–127.

    Google Scholar 

  6. Wang, X.Y., P.A. Seib, and K.S. Ra, l-Ascorbic Acid and Its 2-Phosphorylated Derivatives in Selected Foods: Vitamin C Fortification and Antioxidants Properties, J. Food Sci. 60:1296–1299 (1992).

    Google Scholar 

  7. Larson, R.A., The Antioxidants of Higher Plants, Phytochemistry 27:969–978 (1988).

    Article  CAS  Google Scholar 

  8. Graf, E., Antioxidant Potential of Ferulic Acid, Free Radicals Biol. 13:435–448 (1992).

    Article  CAS  Google Scholar 

  9. Yagi, K., and N. Ohishi, Action of Ferulic Acid and Its Derivatives as Antioxidants, J. Nutr. Sci. Vitaminol. 25:127–130 (1979).

    CAS  Google Scholar 

  10. Liu, X.-Y., F.-L. Guo, L.-M. Wu, and Z.-L. Liu, Remarkable Enhancement of Antioxidant Activity of Vitamin C in an Artificial Bilayer by Making It Lipo-Soluble, Chem. Phys. Lipids 83:39–43 (1996).

    Article  CAS  Google Scholar 

  11. Marinova, E.M., and N.V. Yanishlieva, Effect of Lipid Unsaturation on the Antioxidative Activity of Some Phenolic Acids, J. Am. Oil Chem. Soc. 71:427–434 (1994).

    Article  CAS  Google Scholar 

  12. Chimi, H., J. Cillard, P. Cillard, and M. Rahmani, Peroxyl and Hydroxyl Radical Scavenging Activity of Some Natural Phenolic Antioxidants, Ibid.:307–312 (1991).

    CAS  Google Scholar 

  13. Han, D., O.S. Yi, and H.K. Shin, Antioxidative Effect of Ascorbic Acid Solubilized in Oils via Reversed Micelles, J. Food Sci. 55:247–249 (1990).

    Article  CAS  Google Scholar 

  14. Ito, S., C. Kobayashi, and S. Ikeda, Jpn. Kokai Tokkyo Koho JP 09065864 (1997).

  15. Gutman, A.L., E. Shkolnik, and M. Shapira, A Convenient Method for Enzymatic Benzyl-Alkyl Transesterification Under Mild Neutral Conditions, Tetrahedron 48:8775–8780 (1992).

    Article  CAS  Google Scholar 

  16. Ballesteros, A., U. Bornscheuer, A. Capewell, D. Combes, J.-S. Condoret, K. Koening, F.N. Kolisis, A. Marty, U. Menge, T. Scheper, H. Stamatis, and A. Xenakis, Enzymes in Non-Conventional Phases, Biocatal. Biotransform. 13:1–42 (1995).

    CAS  Google Scholar 

  17. John, V.T., and G. Abraham, Lipase Catalysis and Its Applications, in Biocatalysis for Industry, edited by J.S. Dodrick, Plenum Press, New York, 1991, pp. 193–218.

    Google Scholar 

  18. Guyot, B., B. Bosquette, M. Pina, and J. Graille, Esterification of Phenolic Acids from Green Coffee with an Immobilized Lipase from Candida antarctica in Solvent-Free Medium, Biotechnol. Lett. 19:529–532 (1997).

    Article  CAS  Google Scholar 

  19. Buisman, G.J.H., C.T.W. van Helteren, G.F.H. Kramer, J.W. Veldsink, J.T.P. Derksen, and F.P. Cuperus, Enzymatic Esterification of Functionalized Phenols for the Synthesis of Lipophilic Derivatives, Ibid.:131–136 (1998).

    Article  CAS  Google Scholar 

  20. Enomoto, K., T. Miyamori, A. Sakimae, and R. Numazawa, Eur. Pat. Appl. EP, 401,704 (1990).

    Google Scholar 

  21. Sakashita, K., S. Miyamoto, and A. Sakimae, Eur. Pat. Appl. EP, 514,694 (1992).

    Google Scholar 

  22. Humeau, C., M. Girardin, D. Coulon, and A. Miclo, Synthesis of 6-O-Palmitoyl l-Ascorbic Acid Catalyzed by Candida antarctica Lipase, Biotechnol. Lett. 17:1091–1094 (1998).

    Article  Google Scholar 

  23. Borneman, W.S., R.D. Hartley, W.H. Morrison, D.E. Akin, and L.G. Ljungdahl, Feruloyl and p-Coumaroyl Esterase from Anaerobic Fungi in Relation to Plant Cell Wall Degradation, Appl. Microbiol. Biotechnol. 33:345–351 (1990).

    Article  CAS  Google Scholar 

  24. Nishimura, T., T. Kometani, H. Takii, Y. Terada, and S. Okada, Glucosylation of Caffeic Acid with Bacillus subtilis X-23 a-Amylase and a Description of the Glucosides, J. Ferment. Bioeng. 80:18–23 (1995).

    Article  CAS  Google Scholar 

  25. Gandhi, N.N., S.B. Sawant, J.B. Joshi, and D. Mukesh, Lipozyme Deactivation by Butanol and Temperature, Enzyme Microb. Technol. 17:373–380 (1995).

    Article  CAS  Google Scholar 

  26. Karamajc, M., and R. Amarowicz, Inhibition of Pancreatic Lipase by Phenolic Acids—Examination in vitro, Z. Naturforsch. C. Biochem. Biophys. Biol. Virol. 51:903–905 (1996).

    Google Scholar 

  27. Stamatis, H., V. Sereti, and F.N. Kolisis, Studies on the Enzymatic Synthesis of Sugar Esters in Organic Medium and Supercritical Carbon Dioxide, Chem. Biochem. Eng. Q. 12:151–156 (1998).

    CAS  Google Scholar 

  28. Tsitsimpikou, C., H. Stamatis, V. Sereti, H. Daflos, and F.N. Kolisis, Acylation of Glucose Catalysed by Lipases in Supercritical Carbon Dioxide, J. Chem. Technol. Biotechnol.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Kolisis.

About this article

Cite this article

Stamatis, H., Sereti, V. & Kolisis, F.N. Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants. J Amer Oil Chem Soc 76, 1505–1510 (1999). https://doi.org/10.1007/s11746-999-0193-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-999-0193-1

Key words

Navigation