Skip to main content

Free radicals, oxidative stress, and antioxidants in human health and disease

Abstract

Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O ·−2 ) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O ·−2 and H2O2 exist. Superoxide dismutases (SOD) remove O ·−2 by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.

References

  1. Gomberg, M., An Incidence of Trivalent Carbon Trimethylphenyl, J. Am. Chem. Soc. 22:757–771 (1900).

    Article  Google Scholar 

  2. Hey, D.H., and W.A. Waters, Some Organic Reactions Involving the Occurrence of Free Radicals in Solution, Chem. Rev. 21:169–208 (1937).

    CAS  Article  Google Scholar 

  3. Cadogan, J.I.G., Principles of Free Radical Chemistry, The Chemical Society, London, 1973.

    Google Scholar 

  4. Weiss, J., Investigations of the Radical HO2 in Solution, Trans. Faraday Soc. 31:668–681 (1935).

    CAS  Article  Google Scholar 

  5. Perkins, M.J., Radical Chemistry, Ellis Horwood, London 1996.

    Google Scholar 

  6. Moad, G., and D.H. Solomon, The Chemistry of Free Radical Polymerization, Pergamon, Oxford, 1995.

    Google Scholar 

  7. Waters, W.A., A Chemical Interpretation of the Mechanism of Oxidation by Dehydrogenase Enzymes, Trans. Faraday Soc. 39:140–151 (1943).

    CAS  Article  Google Scholar 

  8. Gerschman, R., D.L. Gilbert, S.W. Nye, P. Dwyer, and W.O. Fenn, Oxygen Poisoning and X-Irradiation: A Mechanism in Common, Science 119:623–626 (1954).

    PubMed  CAS  Article  ADS  Google Scholar 

  9. McCord, J.M., and I. Fridovich, Superoxide Dismutase. An Enzymatic Function for Erythrocuprein (Hemocuprein), J. Biol. Chem. 224:6049–6055 (1969).

    Google Scholar 

  10. Michelson, A.M., J.M. McCord, and I. Fridovich, Superoxide and Superoxide Dismutases, Academic Press, London, 1977.

    Google Scholar 

  11. Aruoma, O.I., Free Radicals and Foods, Chem. Br. 29:210–214 (1993).

    CAS  Google Scholar 

  12. Porter, W.L., Paradoxical Behaviour of Antioxidants in Food and Biological Systems, Toxicol. Ind. Health 9:93–122 (1993).

    PubMed  CAS  Google Scholar 

  13. Hudson, B.J.F., Food Antioxidant, Elsevier Applied Science London.

  14. Frankel, E.N., Lipid Oxidation, Prog. Lipid Res. 19:1–22 (1980).

    PubMed  CAS  Article  Google Scholar 

  15. Papas, A.M., Oil-Soluble Antioxidants in Foods, Toxicol. Ind. Health 9:123–149 (1993).

    PubMed  CAS  Google Scholar 

  16. Löliger, R., The Use of Antioxidants in Food, in Free Radicals and Food Additives, edited by O.I. Aruoma and B. Halliwell, Tayler & Francis, London, 1991, pp. 121–150.

    Google Scholar 

  17. Diplock, A.T., Antioxidant Nutrients and Disease Prevention: An Overview, Am. J. Clin. Nutr. 53:189S–193S.

  18. Block, G., B. Pattersen, and A. Subar, Fruit, Vegetables and Cancer Prevention: A Review of the Epidemiological Evidence, Nutr. Cancer 18:1–29 (1992).

    PubMed  CAS  Article  Google Scholar 

  19. Aruoma, O.I., Characterization of Drugs as Antioxidant Prophylactics, Free Radical Biol. Med. 20:675–705 (1996).

    CAS  Article  Google Scholar 

  20. Duthie, S.J., A. Ma, M.A. Ross, and A.R. Collins, Antioxidant Supplementation Decreases Oxidative DNA Damage in Human Lymphocytes, Cancer Res. 56:1291–1295 (1996).

    PubMed  CAS  Google Scholar 

  21. Pezzuto, J.M., Plant-Derived Anticancer Agents, Biochem. Pharmacol. 53:121–133 (1997).

    PubMed  CAS  Article  Google Scholar 

  22. Pryor, W.A., Free Radical Biology: Xenobiotics, Cancer, and Aging, Ann. N.Y. Acad. Sci. 393:1–22 (1982).

    PubMed  CAS  Article  Google Scholar 

  23. Southorn, P.A., and G. Powis, Free Radicals in Medicine II. Involvement in Human Disease, Mayo Clin. Proc. 63:390–408 (1988).

    PubMed  CAS  Google Scholar 

  24. Halliwell, B., and J M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press Oxford, 1989.

  25. Aruoma, O.I., Free Radicals in Tropical Diseases, Harwood Academic Publishers, London, 1991.

    Google Scholar 

  26. Babior, B.M., Oxidants from Phagocytes: Agents of Defense and Destruction, Blood 64:959–966 (1984).

    PubMed  CAS  Google Scholar 

  27. Klebanoff, S.J., Oxygen Metabolism and the Toxic Properties of Phagocytes, Ann. Intern. Med. 93:480–489 (1980).

    PubMed  CAS  Google Scholar 

  28. Weiss, S.J., Tissue Destruction by Neutrophils, New Engl. J. Med. 320:365–376 (1989).

    PubMed  CAS  Article  Google Scholar 

  29. Del-Maestro, R.F., An Approach to Free Radicals in Medicine and Biology, Acta Physiol. Scand. suppl. 492:153–168 (1980).

    PubMed  CAS  Google Scholar 

  30. For a collection of review articles, see Oxygen Radicals and Lung Injury, Environ. Health Perspect. 102 (suppl 10) 5–213 (1994).

  31. Orrenius, S., D.J. McConkey, G. Bellomo, and P. Nicotera, Role of Ca2+ in Toxic Cell Killing, Trends Pharmacol. Sci. 10:281–285 (1989).

    PubMed  CAS  Article  Google Scholar 

  32. Bast, A., Oxidative Stress and Calcium Homeostasis, in DNA and Free Radicals, edited by B. Halliwell and O.I. Aruoma, Ellis Horwood, London, 1993, pp. 95–108.

    Google Scholar 

  33. Stokinger, H.E., Ozone Toxicology, Arch. Environ. Health 10: 719–731 (1965).

    PubMed  CAS  Google Scholar 

  34. Mustafa, M.G., Biochemical Basis of Ozone Toxicity, Free Radical Biol. Med. 9:245–265 (1990).

    CAS  Article  Google Scholar 

  35. Pryor, W.A., Mechanism of Radical Formation from Reactions of Ozone with Target Molecules in the Lung, Ibid.:451–465 (1994).

    CAS  Article  Google Scholar 

  36. Kanofsky, J.R., and P. Sima, Singlet Oxygen Production from the Reactions of Ozone with Biological Molecules, J. Biol. Chem. 266:9039–9042 (1991).

    PubMed  CAS  Google Scholar 

  37. Palmer, R.M.J., D.S. Ashton, and S. Moncada, Vascular Endothelium Cell Synthesize Nitric Oxide from l-Arginine, Nature 333:664–666 (1988).

    PubMed  CAS  Article  ADS  Google Scholar 

  38. Ignarro, L.J., G.M. Buga, K.S. Wood, R.E. Byrns, and G. Chandhuri, Endothelium-Derived Relaxing Factor Produced and Released from Artery and Vein Is Nitric Oxide, Proc. Natl. Acad. Sci. USA 84:9265–9269 (1987).

    PubMed  CAS  Article  ADS  Google Scholar 

  39. Sneddon, J.W., and J.R. Vane, Endothelium-Derived Relaxing Factor Reduces Platelet Adhesion to Bovine Endothelium Cells, Ibid.:1341–1344 (1988).

    Google Scholar 

  40. Gaston, B., J.M. Drazen, J. Lescalzo, and J.S. Stamler, The Biology of Nitrogen Oxide in the Airways, Am. J. Respir. Crit. Care Med. 149:538–551 (1994).

    PubMed  CAS  Google Scholar 

  41. Anggärd, E., Nitric Oxide: Mediator, Murderer and Medicine, Lancet 343:1199–1206 (1994).

    PubMed  Article  Google Scholar 

  42. Rubbo, H., V. Darley-Usmar, and B.A. Freeman, Nitric Oxide Regulation of Tissue Free Radical Injury, Chem. Res. Toxicol. 9:809–820 (1996).

    PubMed  CAS  Article  Google Scholar 

  43. Lancaster, J., ed., The Biological Chemistry of Nitric Oxide, Academic Press, New York, 1995.

    Google Scholar 

  44. Sessa, W.C., K. Pritchard, N. Seyedi, J. Wang, and T.H. Hintze, Chronic Exercise in Dogs Increases Coronary Vascular Nitric Oxide Production and Endothelial Cell Nitric Oxide Synthase Gene Expression, Circ. Res. 74:349–353 (1994).

    PubMed  CAS  Google Scholar 

  45. de Rojas-Walker, T., S. Tamir, J. Hong, J.S. Wishnok, and S.R. Tannenbaum, Nitric Oxide Induces Oxidative Damage in Addition to Deamination in Macrophage DNA. Chem. Res. Toxicol. 8:473–477 (1995).

    Article  Google Scholar 

  46. Douki, H., and J. Cadet, Peroxynitrite Mediated Oxidation of Purine Bases of Nucleosides and Isolated DNA, Free Rad. Res. 24:369–380 (1996).

    CAS  Google Scholar 

  47. Uppu, R.M., R. Cueto, G.L. Squadrito, M.G. Salgo, and W.A. Pryor, Reactions of Peroxynitrite with 2′-Deoxyguanosine, 7,8-dihydro-8-oxo-2′-deoxyguanosine, and Calf-thymus DNA, Free Radical Biol. Med. 21:407–411 (1996).

    CAS  Article  Google Scholar 

  48. Merchant, K., H. Chen, T.C. Gonzalez, L.K. Keefer, and B.R. Shaw, Deamination of Single-Stranded DNA Cytosine Residues in Aerobic Nitric Oxide Solution at Micromolar Total NO Exposures, Chem. Res. Toxicol. 9:891–896 (1996).

    PubMed  CAS  Article  Google Scholar 

  49. Douki, T., J. Cadet, and B.N. Ames, An Adduct Between Peroxynitrite and 2′-Deoxyguanosine: 4,5-Dihydro-5-hydroxy-4-(nitrosooxy)-2′-deoxyguanosine, Ibid.:3–7 (1996).

    PubMed  CAS  Article  Google Scholar 

  50. Yermilov, V., J. Rubio, and H. Ohshima, Formation of 8-Ni-troguanine in DNA Treated with Peroxynitrite in vitro and Its Rapid Removal from DNA by Depurination, FEBS Lett. 376:207–210 (1995).

    PubMed  CAS  Article  Google Scholar 

  51. Spencer, J.P.E., A. Jenner, O.I. Aruoma, C.E. Cross, and B. Halliwell, Base Modification and Strand Breakage in Isolated Calf Thymus DNA and in DNA from Human Skin Epidermal Keratinocytes Exposed to Peroxynitrite or 3-Morpholinosyd-nonimine, Chem. Res. Toxicol. 9:1152–1158 (1996).

    PubMed  CAS  Article  Google Scholar 

  52. Salgo, M.G., K. Stone, G.L. Squadrito, J.R. Battista, and W.A. Pryor, Peroxynitrite Causes DNA Nicks in Plasmid pBR322, Biochem. Biophys. Res. Commun. 210:1026–1030 (1995).

    Article  Google Scholar 

  53. Huie, R.E., and S. Padmaja, The Reaction of NO with Superoxide, Free Radical Res. Commun. 18:195–199 (1993).

    CAS  Google Scholar 

  54. van der Vliet, A., D. Smith, C.A. O’Neill, H. Kaur, V. Darley-Usmar, C.E. Cross, and B. Halliwell, Interactions of Peroxynitrite with Human Plasma and Its Constituents: Oxidative Damage and Antioxidant Depletion, Biochem. J. 303:295–301 (1994).

    PubMed  Google Scholar 

  55. Gatti, R.M., O. Augusto, J.K. Kwee, and S. Giorgio, Leish-manicidal Activity of Peroxynitrite, Redox Rep. 1:261–265 (1995).

    CAS  Google Scholar 

  56. Watts, B.P., M. Barnard, and J.F. Turrens, Peroxynitrite-Dependment Chemuliminescence of Amino Acids, Proteins and Intact Cells, Arch. Biochem. Biophys. 317:324–330 (1995).

    PubMed  CAS  Article  Google Scholar 

  57. Zhu, L., C. Gunn, and J.S. Beckman, Bactericidal Activity of Peroxynitrite, Ibid.:452–457 (1992).

    PubMed  CAS  Article  Google Scholar 

  58. Radi, R., J.S. Beckman, K.M. Bush, and B.A. Freeman, Peroxynitrite Oxidation of Sulfhydryls. The Cytotoxic Potential of Superoxide and Nitric Oxide, J. Biol. Chem. 266:4244–4250 (1991).

    PubMed  CAS  Google Scholar 

  59. Tarpey, M.M., J.S. Beckman, H. Ischiropolous, J.Z. Gore, and T.A. Brock, Peroxynitrite Stimulates Vascular Smooth Muscle Cell Cyclic GMP Synthesis, FEBS Lett. 364:314–318 (1995).

    PubMed  CAS  Article  Google Scholar 

  60. Kalyanaraman, B., V. Darley-Usmar, A. Struck, N. Hogg, and S. Parathasarathy, Role of Apolipoprotein-Derived Radical and α-Tocopheroxyl Radical in Peroxidase-Dependent Oxidation of Low Density Lipoprotein, J. Lipid Res. 36:1037–1045 (1995).

    PubMed  CAS  Google Scholar 

  61. Pryor, W.A., and G.L. Squadrito, The Chemistry of Peroxynitrite: A Product from the Reaction of Nitric Oxide with Superoxide, Lung Cell. Mol. Physiol. 12:L699-L722 (1995).

    Google Scholar 

  62. Graham, A., N. Hogg, B. Kalyanaraman, V. O’Leary, V. Darley-Usmar, and S. Moncada, Peroxynitrite Modification of Low-Density Lipoprotein Leads to Recognition by the Macrophage Scavenger Receptor, FEBS Lett. 330:181–185 (1993).

    PubMed  CAS  Article  Google Scholar 

  63. Ischiropoulos, H., and A.B. Al-Mehdi, Peroxynitrite Mediated Oxidative Protein Modifications, Ibid.:279–282 (1995).

    PubMed  CAS  Article  Google Scholar 

  64. Esterbauer, H., J. Gebicki, H. Puhl, and G. Juergens, The Role of Lipid Peroxidation and Antioxidants on Oxidative Modification of LDL, Free Radical Biol. Med. 13:341–390 (1992).

    CAS  Article  Google Scholar 

  65. Cerruti, P.A., Pro-oxidant States and Tumor Activation, Science 227:375–381 (1985).

    Article  ADS  Google Scholar 

  66. Cheeseman, K.H., Lipid Peroxidation and Cancer, in DNA and Free Radicals, edited by B. Halliwell and O.I. Aruoma, pp. 109–144, Ellis Horwood, London, 1993.

    Google Scholar 

  67. Morrow, J.D., K.E. Hill, R.F. Burk, T.M. Mannour, K.F. Badr, and L.J. Roberts, A Series of Prostaglandin F2 Like Compounds Are Produced in vivo by Humans by a Non-cyclooxygenase, Free Radical Catalyzed Mechanism, Proc. Natl. Acad. Sci. USA 87:9383–9387 (1990).

    PubMed  CAS  Article  ADS  Google Scholar 

  68. Morrow, J.D., and L.J. Roberts, The Isoprostanes: Current Knowledge and Directions for Future Research, Biochem. Pharmacol. 51:1–9 (1996).

    PubMed  CAS  Article  Google Scholar 

  69. Esterbauer, H., The Chemistry of Oxidation of Lipoproteins, in Oxidative Stress, Lipoproteins and Cardiovascular Dysfunction, edited by C. Rice-Evans and K.R. Bruckdorfer, Portland Press, London, 1995, pp. 55–79.

    Google Scholar 

  70. Kalyanaraman, B., and P.G. Sohnle, Generation of Free Radical Intermediates from Foreign Compounds by Neutrophil-Derived Oxidants, J. Clin. Invest. 75:1618–1622 (1985).

    PubMed  CAS  Google Scholar 

  71. Carr, A.C., J.J.M. van den Berg, and C.C. Winterbourn, Chlorination of Cholesterol in Cell Membranes by Hypochlorous Acid, Arch. Biochem. Biophys. 332:63–69 (1996).

    PubMed  CAS  Article  Google Scholar 

  72. Travis, J., and G.S. Salvesen, Human Plasma Proteinase Inhibitors, Annu. Rev. Biochem. 52:655–709 (1983).

    PubMed  CAS  Article  Google Scholar 

  73. Dennis, W.H., V.P. Oliveieri, and C.W. Kruse, The Reaction of Nucleotides with Aqueous Hypochlorous Acid, Water Res. 13:357–362 (1979).

    CAS  Article  Google Scholar 

  74. Gould, J.P., and T.R. Hay, The Nature of the Reactions Between Chlorine and Purine and Pyrimidine Bases: Products and Kinetics, Wat. Res. Tech. 14:629–640 (1982).

    CAS  Google Scholar 

  75. Kozumbo, W.J., S. Agarwal, and H.S. Koren, Breakage and Binding of DNA by Reaction Products of Hypochlorous Acid with Aniline, 1-Naphthylamine or 1-Naphthol, Toxicol. Appl. Pharmacol. 115:107–115 (1992).

    PubMed  CAS  Article  Google Scholar 

  76. Aruoma, O.I., B. Halliwell, R. Aeschbach, and J. Löliger, Antioxidant and Pro-oxidant Properties of Active Rosemary Constituents: Carnosol and Carnosic Acid, Xenobiotica 22:257–268 (1992).

    PubMed  CAS  Article  Google Scholar 

  77. Aruoma, O.I., A. Murcia, J. Butler, and B. Halliwell, Evaluation of the Antioxidant Actions of Gallic Acid and Its Derivatives, J. Food Chem. 41:1880–1885 (1993).

    CAS  Article  Google Scholar 

  78. Aruoma, O.I., Nutrition and Health Aspects of Free Radicals and Antioxidants, Food Chem. Toxicol. 32:671–683 (1994).

    PubMed  CAS  Article  Google Scholar 

  79. Fridovich, I., Superoxide Dismutases. An Adaptation to the Paramagnetic Gas, J. Biol. Chem. 264:7761–7764 (1989).

    PubMed  CAS  Google Scholar 

  80. Aruoma, O.I., B. Halliwell, E. Gajeswki, and M. Dizdaroglu, Copper-Ion Dependent Damage to the Bases in DNA in the Presence of Hydrogen Peroxide, Biochem. J. 273:601–604 (1991).

    PubMed  CAS  Google Scholar 

  81. Aruoma, O.I., and B. Halliwell, Superoxide-Dependent and Ascorbate-Dependent Formation of Hydroxyl Radicals from Hydrogen Peroxide in the Presence of Iron: Are Lactoferrin and Transferrin Promoters of Hydroxyl Radical Generation, Ibid.:273–278 (1987).

    PubMed  CAS  Google Scholar 

  82. Halliwell, B., and J.M.C. Gutteridge, Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview, Methods Enzymol. 186:1–85 (1990).

    PubMed  CAS  Google Scholar 

  83. Chevion, M., Y. Liang, R. Har-El, E. Berenshtein, G. Uretzky, and N. Kitrossky, Copper and Iron Are Mobilized Following Myocardial Ischemia: Possible Productive Criteria for Tissue Injury, Proc. Natl. Acad. Sci. USA 90:1102–1106 (1993).

    PubMed  CAS  Article  ADS  Google Scholar 

  84. Ramos, C.L., S. Pou, B.E. Britigan, M.S. Cohen, and G.M. Rosen, Spin Trapping Evidence for Myeloperoxidase-Dependent Hydroxyl Radical Formation by Human Neutrophils and Monocytes, J. Biol. Chem. 267:8307–8312 (1992).

    PubMed  CAS  Google Scholar 

  85. Ramos, C.L., S. Pou, and G.M. Rosen, Effect of Antiinflammatory Drugs on Myeloperoxidase-Dependent Hydroxy Radical Generation by Human Neutrophils, Biochem. Pharmacol. 49:1079–1084 (1995).

    PubMed  CAS  Article  Google Scholar 

  86. Olanow, C.W., P. Jenner, and M. Youdim, Neurodegeneration and Neuroprotection in Parkinson’s Disease, Academic Press, London, 1996.

    Google Scholar 

  87. Moncada, S., and A. Higgs, The l-Arginine-Nitric Oxide Pathway, New Engl. J. Med. 329:2002–2012 (1993).

    PubMed  CAS  Article  Google Scholar 

  88. Ames, B.N., M.K. Shigenaga, and T.M. Hagen, Oxidants, Antioxidants, and the Degenerative Disease of Aging, Proc. Natl. Acad. Sci. USA 90:7915–7922 (1993).

    PubMed  CAS  Article  ADS  Google Scholar 

  89. Ganguly, P.K., Antioxidant Therapy in Congestive Heart Failure: Is There Any Advantage? J. Intern. Med. 229:205–208 (1991).

    PubMed  CAS  Article  Google Scholar 

  90. Frei, B. (ed.), Natural Antioxidants in Human Health and Disease, Academic Press, New York, 1994.

    Google Scholar 

  91. McCord, J.M., Human Disease, Free Radicals and the Oxidant/Antioxidant Balance, Clin. Biochem. 26:351–357 (1993).

    PubMed  CAS  MathSciNet  Article  Google Scholar 

  92. Clemens, M.R., Antioxidant Therapy in Haematological Disorders, Adv. Exp. Biol. Med. 264:423–433 (1990).

    CAS  Google Scholar 

  93. Haumann, B.F., Antioxidants: Health Implications, INFORM 5:242–252 (1994).

    Google Scholar 

  94. Ong, A.S.H., and L. Packer (eds.), Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications, Birkhauser, Basel, 1992.

    Google Scholar 

  95. Gutteridge, J.M.C., and B. Halliwell, Antioxidants in Nutrition, Health and Disease, Oxford University Press, Oxford, 1995.

    Google Scholar 

  96. Kumpulainen, J.T., and J.T. Salonen (eds.), Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention, Royal Society of Chemistry, London, 1996.

    Google Scholar 

  97. Halliwell, B., Antioxidants in Human Health and Disease, Annu. Rev. Nutr. 16:33–50 (1996).

    PubMed  CAS  Article  Google Scholar 

  98. Sies, H., Antioxidants in Disease Mechanisms and Therapy, Academic Press, London, Vol. 38, Advances in Pharmacology Series, 1996.

    Google Scholar 

  99. Stampfer, M.J., C.H. Hennekens., J.E. Manson, G.A. Colditz, B. Rosner, and W.C. Willett, Vitamin E Consumption and the Associated Risk of Coronary Disease in Women, New Engl. J. Med. 328:1444–1449 (1993).

    PubMed  CAS  Article  Google Scholar 

  100. Knekt, P., A. Reunanen, R. Järvinen, R. Seppänen, M. Heliövaara, and A. Aromaa, Antioxidant Vitamin Intake and Coronary Mortality in a Longitudinal Population Study, Am. J. Epidemiol. 139:1180–1189 (1994).

    PubMed  CAS  Google Scholar 

  101. Hertog, M.G.L., E.J.M. Feskens, P.C. Hollman, M.B. Katan, and D. Kromhout, Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study, Lancet 342:1007–1011 (1993).

    PubMed  CAS  Article  Google Scholar 

  102. Gey, K.F., Long Term Adequacy of All Major Antioxidants, Presumably in Synergy with Other Vegetable-Derived Nutrients May Help to Prevent Early Stages of Cardiovascular Disease and Cancer Respectively, Int. J. Vitamin Nutr. Res. 65:65–69 (1995).

    CAS  Google Scholar 

  103. Manson, J.E., M.J. Stampfer, W.C. Willett, G.A. Colditz, P.E. Speizer, and C.H. Hennekens, Consumption of Antioxidant Vitamins and Incidence of Stroke in Women, Am. J. Epidemiol. 138:603 (1993).

    Google Scholar 

  104. Gridley, G., J.K. McLaughlin, G. Block, W.J. Blot, M. Gluch, and J.F. Fraumeni, Vitamin Supplement Use and Reduced Risk of Oral and Pharyngeal Cancer, Ibid.:1083–1092 (1992).

    PubMed  CAS  Google Scholar 

  105. Hankinson, S.E., J.J. Stampfer, J.M. Seddon, G.A. Colditz, B. Rosner, F.E. Speizer, and W.C. Willett, Nutrient Intake and Cataract Extraction in Women: A Prospective Study, Brit. Med. J. 305:335–339 (1992).

    PubMed  CAS  Google Scholar 

  106. Gey, K.F., H.B. Stähelin, and M. Eichholzer, Poor Plasma Status of Carotene and Vitamin C Is Associated with Higher Mortality from Ischemic Heart Disease and Stroke: Basel Prospective Study, Clin. Invest. 71:3–6 (1993).

    CAS  Article  Google Scholar 

  107. Jialal, I., and S.M. Grundy, Effect of Dietary Supplementation with Alpha-Tocopherol on the Oxidative Modification of Low Density Lipoprotein, J. Lipid Res. 33:899–906 (1992).

    PubMed  CAS  Google Scholar 

  108. Blot, W.J., J.-Y. Li, P.R. Taylor, W. Guo, S. Dawsey, G.-Q. Wang, C.S. Yang, S.-F. Zheng, M. Gail, G.-Y. Li, Y. Yu, B.-Q. Liu, J. Tangrea, Y.-H. Sun, F. Liu, J.F. Fraumeni, Y.-H. Zhang, and B. Li, Nutrition Intervention Trials in Linxian, China, Supplementation with Specific Vitamin/Mineral Combinations, Cancer Incidence and Disease Specific Mortality in the General Population, J. Natl. Cancer Inst. 85:1483–1492 (1993).

    PubMed  CAS  Article  Google Scholar 

  109. West, S., S. Vitale, J. Hallfrisch, B. Munoz, D. Muller, S. Bressler, and N.M. Bressler, Are Antioxidants or Supplements Protective for Age Related Macular Degeneration, Arch. Ophthalmol. 112:222–227 (1994).

    PubMed  CAS  Google Scholar 

  110. Greenberg, E.R., J.A. Baron, T.D. Tostesen, D.H. Freeman, G.J. Beck, J.H. Bond, T.A. Colacchio, J.A. Collier, H.D. Frankl, R.W. Haile, J.S. Mandel, D.W. Nierenberg, R. Rothistein, D.C. Snozer, N.M. Stevens, R.W. Summers, and R.U. van Stolk, A Clinical Trial of Antioxidant Vitamins to Prevent Colorectal Adenoma, New Engl. J. Med. 331:141–147 (1994).

    PubMed  CAS  Article  Google Scholar 

  111. Heinonen, O.P., and D. Albanes, The Effect of Vitamin E and Beta Carotene on the Incidence of Lung Cancer and Other Cancers in Male Smokers (The Alpha-tocopherol, Beta Carotene Cancer Prevention Study Group), Ibid.: 1029–1034 (1994).

    Article  Google Scholar 

  112. Henekens, C.H., J.E. Buring, J.E. Manson, M. Stamper, B. Rosner, N.R. Cook, C. Belanger, F. Lamotte, J.M. Gaziano, P.M. Ridker, W. Willet, and R. Peto, Lack of Effect of Long-Term Supplementation With β-Carotene on the Incidence of Malignant Neoplasma and Cardiovascular Disease, Ibid.:1145–1149 (1996).

    Article  Google Scholar 

  113. Gillman, M.W., L.A. Cupples, D. Gagnou, B.M. Posner, R.C. Ellison, W.P. Castelli, and P.A. Wolf, Protective Effect of Fruits and Vegetables on Development of Stroke in Men, J. Am. Med. Assoc. 273:1113–1117 (1995).

    CAS  Article  Google Scholar 

  114. Stephens, N.G., A. Parsons, P.M. Schofield, F. Kelly, K. Cheeseman, M.J. Mitchinson, and M.J. Brown, Randomised Controlled Trial of Vitamin E in Patients with Coronary Diseases: Cambridge Heart Antioxidant Study (CHAOS), Lancet 347:781–786 (1996).

    PubMed  CAS  Article  Google Scholar 

  115. Grey, K.F., Ten Year Retrospective on the Antioxidant Hypothesis of Atherosclerosis: Threshold Plasma Levels of Antioxidant Micronutrients Related to Minimum Cardiovascular Risk, J. Nutr. Biochem. 6:206–236 (1996).

    Google Scholar 

  116. Omenn, G.S., G.E. Goodman, M.D. Thornquist, J. Balmes, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meyskens, B. Valanis, J.H. Williams, S. Barnhart and S. Hammer, Effect of a Combination of β-Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease, New Engl. J. Med. 334:1150–1155 (1996).

    PubMed  CAS  Article  Google Scholar 

  117. Spencer, J.P.E., A. Jenner, O.I. Aruoma, C.E. Cross, R. Wu, and B. Halliwell, Oxidative DNA Damage in Human Respiratory Tract Epithelial Cells. Time Course in Relation to DNA Strand Breakage, Biochem. Biophys. Res. Commun. 224:17–22 (1996).

    PubMed  CAS  Article  Google Scholar 

  118. Jaruga, P., and M. Dizdaroglu, Repair of Products of Oxidative DNA Base Damage in Human Cells, Nucleic Acids Res. 24:1389–1394 (1996).

    PubMed  CAS  Article  Google Scholar 

  119. Nackerdien, Z., R. Olinski, and M. Dizdaroglu, DNA Base Damage in Chromatin of γ-Irradiated Cultured Human Cells, Free Radical Res. Commun. 16:259–273 (1992).

    CAS  Google Scholar 

  120. Breen, A.P., and J.A. Murphy, Reactions of Oxyl Radicals with DNA, Free Radical Biol. Med. 18:1033–1077 (1995).

    CAS  Article  Google Scholar 

  121. Brynes, R.W., Evidence for Involvement of Multiple Iron Species in DNA Single-Strand Scission by H2O2 in HL-60 Cells, Ibid.:399–406 (1996).

    Article  Google Scholar 

  122. Klein, C.B., K. Frenkel, and M. Costa, The Role of Oxidative Processes in Metal Carcinogenesis, Chem. Res. Toxicol. 4:592–604 (1991).

    PubMed  CAS  Article  Google Scholar 

  123. Pezzano, H., and F. Podo, Structure of Binary Complexes of Mono and Polynucleotides with Metal Ions of the First Transition Group, Chem. Rev. 80:365–401 (1980).

    CAS  Article  Google Scholar 

  124. Bryan, S.E., D.L. Vizard, D.A. Beary, R.A. LaBiche, and K.J. Hardy, Partitioning of Zinc and Copper Within Subnuclear Nucleoprotein Particles, Nucl. Acids Res. 9:5811–5823 (1981).

    PubMed  CAS  Article  Google Scholar 

  125. Halliwell, B., and O.I. Aruoma, DNA and Free Radicals, Ellis Horwood, London, 1993.

    Google Scholar 

  126. Aruoma, O.I., B. Halliwell, and M. Dizdaroglu, Iron Ion Dependent Modification of Bases in DNA by the Superoxide Radical Generating System Hypoxanthine/Xanthine Oxidase, J. Biol. Chem. 264:20509–20512 (1989).

    PubMed  CAS  Google Scholar 

  127. Dizdaroglu, M., Chemical Determination of Free Radical Induced Damage to DNA, Free Radical Biol. Med. 10:225–242 (1991).

    CAS  Article  Google Scholar 

  128. Spencer, J.P.E., A. Jenner, O.I. Aruoma, P.J. Evans, H. Kaur, D.T. Dexter, P. Jenner, A.J. Lees, DC. Marsden, and B. Halliwell, Intense Oxidative DNA Damage Promoted by l-DOPA and Its Metabolites. Implications for Neurodegenerative Disease, FEBS Lett. 353:246–250 (1994).

    PubMed  CAS  Article  Google Scholar 

  129. Collins, A.R., S.J. Duthie, and V.L. Dobson, Direct Enzymic Detection of Endogenous Oxidative Base Damage in Human Lymphocyte DNA, Carcinogenesis 14:1733–1735 (1993).

    PubMed  CAS  Article  Google Scholar 

  130. Herbert, K.E., M.D. Evans, M.T.V. Finnegan, S. Farooq, N. Mistry, I.D. Podmore, P. Farmer, and J. Lunec, A Novel HPLC Procedure for the Analysis of 8-Oxoguanine in DNA, Free Radical Biol. Med. 20:467–473 (1996).

    CAS  Article  Google Scholar 

  131. Shigenaga, M.K., C.J. Gimeno, and B.N. Ames, Urinary 8-Hydroxy 2′Deoxyguanosine as a Biological Marker of in vivo Oxidative DNA Damage, Proc. Natl. Acad. Sci. USA 86:9697–9701 (1989).

    PubMed  CAS  Article  ADS  Google Scholar 

  132. Loft, S., A. Fischer-Nielsen, and I.B. Jeding, 8-Hydroxydeoxyguanosine as a Urinary Marker of Oxidative DNA Damage, J. Toxicol. Environ. Health 40:391–404 (1993).

    PubMed  CAS  Article  Google Scholar 

  133. Stillwell, W.G., H.X. Xu, J.A. Adkins, J.S. Wishnok, and S.R. Tannenbaum, Analysis of Methylated and Oxidized Purines in Urine by Capillary Gas Chromatography-Mass Spectrometry, Chem. Res. Tox. 2:94–99 (1989).

    CAS  Article  Google Scholar 

  134. Teixeira, A.J.R., J.H. Gommers-Ampt, G. van de Werken, J.G. Westra, J.F.C. Stavenviter, and A.P.J.M. de Jong, Method for the Analysis of Oxidized Nucleosides by Gas Chromatography/Mass Spectrometry, Anal. Biochem. 214:474–483 (1993).

    PubMed  CAS  Article  Google Scholar 

  135. Sakumi, K., M. Furuichi, T. Tsuzuki, T. Kakuma, S. Kawabata, H. Maki, and M. Sekiguchi, Cloning and Expression of cDNA for a Human Enzyme That Hydrolyzes 8-Oxo-dGTP, a Mutagenic Substrate for DNA Synthesis, J. Biol. Chem. 268:23524–23530 (1993).

    PubMed  CAS  Google Scholar 

  136. Mo, J.Y., H. Maki, and M. Sekiguchi, Hydrolytic Elimination of a Mutagenic Nucleotide, 8-OxodGTP, by Human 18-Kilodalton Protein; Sanitization of Nucleotide Pool, Proc. Natl. Acad. Sci. USA 89:11021–11025 (1992).

    PubMed  CAS  Article  ADS  Google Scholar 

  137. Halliwell, B., and O.I. Aruoma, Free Radicals and Antioxidants: The Need for in vivo Markers of Oxidative Stress, in Antioxidant Methodology: In Vivo and In Vitro Concepts, edited by O.I. Aruoma and S. Cuppett, AOCS Press, Champaign, 1997.

    Google Scholar 

  138. Goetzl, E.J., J.M. Woods, and R.R. Gorman, Stimulation of Human Eosinophil and Neutrophil Polymorphonuclear Leukocyte Chemotaxis and Random Migration by 12-l-Hydroxy-5,8,10,14-eicosatetraenoic Acid, J. Clin. Invest. 59:179–183 (1977).

    PubMed  CAS  Google Scholar 

  139. O’Flaherty, J.T., and J. Nishihira, 5-Hydroxyeicosatetraenoate Promotes Ca2+ and Protein Kinase Mobilisation in Neutrophils, Biochem. Biophys. Res. Commun. 148:575–581 (1987).

    PubMed  CAS  Article  Google Scholar 

  140. Won, J.G., and D.N. Orth, The Role of Lipoxygenase Metabolite of Arachidonic Acid in the Regulation of Adrenocorticotropin Secretion by Perfused Rat Anterior Pituitary Cells, Endocrinology 135:1496–1503 (1994).

    PubMed  CAS  Article  Google Scholar 

  141. Joulain, C., N. Meskini, G. Anker, M. Lagarde, and A.F. Prigent, Esterification of 12(S)-Hydroxy-5,8,10,14-eicosatetraenoic Acid into the Phospholipids of Human Peripheral Blood Mononuclear Cells: Inhibition of the Proliferative Response, J. Cell. Physiol. 164:154–163 (1995).

    PubMed  CAS  Article  Google Scholar 

  142. Bourdeau, A., M. Mourahir, J.C. Souberbielle, P. Bonnet, P. Herviaux, C. Sachs, and M. Lieberherr, Effects of Lipoxygenase Products of Arachidonate Metabolism on Parathyroid Hormone Secretion, Endocrinology 135:1109–1112 (1994).

    PubMed  CAS  Article  Google Scholar 

  143. Takata, S., A. Papayianni, M. Matsubara, W. Jimenez, P.H. Pronovost, and H.R. Brady, 15-Hydroxyeicosatetraenoic Acid Inhibits Neutrophil Migration Across Cytokine-Activated Endothelium, Am. J. Pathol. 145:541–549 (1994).

    PubMed  CAS  Google Scholar 

  144. Noourooz-Zadeh, J., N.K. Gopaul, S. Barrow, A.I. Mallet, and E.E. Anggärd, Analysis of F2-Isoprostanes as Indicators of Non-enzymatic Lipid Peroxidation in vivo by Gas Chromatography-Mass Spectrometry: Development of a Solid-Phase Extraction Procedure, J. Chromatogr. B667:199–208 (1995).

    Google Scholar 

  145. Guido, G.M., R. McKenna, and W.R. Matthews, Quantitation of Hydroperoxy-Eicosatetraenoic Acids and Hydroxy-Eicosatetraenoic Acids as Indicators of Lipid Peroxidation Using Gas Chromatography-Mass Spectrometry, Anal. Biochem. 209:123–129 (1993).

    PubMed  CAS  Article  Google Scholar 

  146. Morrow, J.D., J.A. Awad, T. Kato, K. Takahashi, K.F. Badr, L.J. Roberts, and R.F. Burk, Formation of Novel Non-cyclooxygenase Derived Prostanoids (F2-isoprostanes) in Carbontetrachloride Hepatotoxicity: An Animal Model of Lipid Peroxidation, J. Clin. Invest. 90:2502–2507 (1992).

    PubMed  CAS  Google Scholar 

  147. Bachi, A., E. Zuccato, M. Beraldi, R. Faneli, and C. Chiabrando, Measurement of Urinary 8-Epi-prostaglandin F, A Novel Index of Lipid Peroxidation in vivo, by Immunoaffinity Extraction/Gas Chromatography-Mass Spectrometry. Basal Levels in Smokers and Nonsmokers, Free Radical Biol. Med. 20:619–624 (1996).

    CAS  Article  Google Scholar 

  148. Morrow, J.D., T.A. Minton, C.R. Mukundan, M.D. Campbell, W.E. Zackert, V.C. Daniel, K.F. Badr, I.A. Badr, and L.J. Roberts, Free Radical-Induced Generation of Isoprostanes in vivo. Evidence for the Formation of D-Ring and E-Ring Isoprostanes, J. Biol. Chem. 269:4317–4326 (1994).

    PubMed  CAS  Google Scholar 

  149. Halliwell, B., Oxidative Stress, Nutrition and Health. Experimental Stratgegies for Optimization of Nutritional Antioxidant Intake in Humans, Free Radical Res. 25:57–74 (1996).

    CAS  Google Scholar 

  150. Halliwell, B., Biochemical Mechanisms Accounting for the Toxic Action of Oxygen on Living Organisms. The Key Role of Superoxide Dismutase, Cell Biol. Int. Rep. 2:113–118 (1978).

    PubMed  CAS  Article  Google Scholar 

  151. Ramotar, D., and B. Demple, Enzymes That Repair Oxidative Damage to DNA, in DNA and Free Radicals, edited by B. Halliwell and O.I. Aruoma, Ellis Horwood, London, 1993, pp. 166–191.

    Google Scholar 

  152. Dean, R.T., J.V. Hunt, A.J. Grant, Y. Yamamoto, and E. Niki, Free Radical Damage to Proteins: The Influence of the Relative Localization of Radical Generation, Antioxidants and Target Proteins, Free Radical Biol. Med. 11:161–168 (1991).

    CAS  Article  Google Scholar 

  153. Wells-Knecht, M.C., T.G. Huggins, D.G. Dyer, S.R. Thorpe, and J.W. Baynes, Oxidized Amino Acids in Lens Proteins with Age. Measurement of o-Tyrosine and Dityrosine in the Aging Human Lens, J. Biol. Chem. 268:12348–12352 (1993).

    PubMed  CAS  Google Scholar 

  154. Reznick, A.Z., and L. Packer, Oxidative Damage to Proteins: Spectrophotometric Method for Carbonyl Assay, Methods Enzymol, 233:357–363 (1994).

    PubMed  CAS  Google Scholar 

  155. Amici, A., R.L. Levine, L. Tsai, and E.R. Stadtman, Conversion of Amino Acid Residues in Proteins and Amino Acid Homopolymers to Carbonyl Derivatives by Metal-Catalyzed Oxidation Reactions, J. Biol. Chem. 264:3341–3346 (1989).

    PubMed  CAS  Google Scholar 

  156. Cao, G., and R.G. Cutler, Protein Oxidation and Aging, Difficulties in Measuring Reactive Protein Carbonyls in Tissues Using 2,4-Dinitrophenylhydrazine, Arch. Biochem. Biophys. 320:106–114 (1995).

    PubMed  CAS  Article  Google Scholar 

  157. Lyras, L., P.J. Shaw, P.J. Evans, and B. Halliwell, Oxidative Damage and Motor Neurone Disease. Difficulties in the Measurement of Protein Carbonyls in Human Brain Tissue, Free Radical Res. 24:397–406 (1996).

    CAS  Google Scholar 

  158. Levine, R.L., J.A. Williams, E.R. Stadtman, and E. Shacter, Carbonyl Assays for Determination of Oxidatively Modified Proteins, Methods Enzymol. 233:346–357 (1994).

    PubMed  CAS  Article  Google Scholar 

  159. Keller, J., N.C. Halmes, J.A. Hinson, and N.R. Pumford, Immunochemical Detection of Oxidized Proteins, Chem. Res. Toxicol. 6:430–433 (1993).

    PubMed  CAS  Article  Google Scholar 

  160. Oliver, C.N., B.A. Ahn, E.J. Moerman, S. Goldstein, and E.R. Stadman, Age-Related Changes in Oxidized Proteins, J. Biol. Chem. 262:5488–5491 (1987).

    PubMed  CAS  Google Scholar 

  161. Ambe, K.S., and A.L. Tappel, Oxidative Damage to Amino Acids, Peptides and Proteins by Radiation, J. Food Sci. 26:448–451 (1962).

    Article  Google Scholar 

  162. Dean, R.T., S. Fu, R. Stocker, and M.J. Davies, Biochemistry and Pathology of Radical Mediated Protein Oxidation, Biochem. J. 324:1–18 (1997).

    PubMed  CAS  Google Scholar 

  163. S. Fu, S., R.T. Dean, and M.J. Davies, Molecular Aspects of Free Radical Damage to Proteins, in Molecular Biology of Free Radicals in Human Diseases, edited by O.I. Aruoma and B. Halliwell, OICA International, Saint Lucia, 1998, pp. 29–56.

    Google Scholar 

  164. Aruoma, O.I., Extracts as Antioxidant Prophylactic Agents, INFORM 8:1236–1242 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J Amer Oil Chem Soc 75, 199–212 (1998). https://doi.org/10.1007/s11746-998-0032-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0032-9

Key words

  • Antioxidants
  • atherosclerosis
  • DNA damage
  • flavonoids
  • free radicals
  • 8-hydroxydeoxyguanosine
  • isoprostanes
  • lipid peroxidation
  • oxidative protein damage
  • oxidative stress
  • phytochemicals