Skip to main content
Log in

Heat-induced gelation of rapeseed proteins: Effect of protein interaction and acetylation

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The gel-forming abilities of a rapeseed protein isolate, composed of 70% globulin (cruciferin) and 30% albumin (napin), and their individual protein components, were investigated. The influence of acetylation upon the gelation properties was also studied. Highest gel strength (measured as shear modulus) of the isolate was obtained at pH values around 9, which is between the isoelectric points of both major proteins. Purified cruciferin gave the highest shear modulus values, with maxima at pH 6 and 8. Weak and poorly stable gels exhibiting strong hysteresis were obtained with isolated napin. Acetylation resulted in a pH shift of the shear modulus maximum of the protein isolate to about 6. The gelation temperature of the acetylated isolate had the highest pH and concentration dependence compared with the other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catsimpoolas, N., and E.W. Meyer, Gelation Phenomena of Soybean Globulins. I. Protein-Protein Interactions, Cereal Chem. 47:559–570 (1970).

    CAS  Google Scholar 

  2. Nakamura, T., Sh. Utsumi, and T. Mori, Effects of Temperature on the Different Stages in Thermal Gelling of Glycinin, J. Agric. Food Chem. 33:1201–1203 (1985).

    Article  CAS  Google Scholar 

  3. Kang, I.J., Y. Matsumura, and T. Mori, Characterization of Texture and Mechanical Properties of Heat-Induced Soy Protein Gels, J. Am. Oil Chem. Soc. 68:339–345 (1991).

    CAS  Google Scholar 

  4. Shimada, K., and J.Cl. Cheftel, Determination of Sulfhydryl Groups and Disulfide Bonds in Heat-Induced Gels of Soy Protein Isolate, J. Agric. Food Chem. 36:147–153 (1988).

    Article  CAS  Google Scholar 

  5. Ohta, N.Y., Y. Segawa, S. Fujii, Y. Fujiwara, M. Kuchiba, T. Matoba, and K. Hasegawa, Intermolecular Forces Involved in the Gelation and Gel Stability of Sesame 13S Globulin, Agric. Biol. Chem. 52:1747–1754 (1988).

    Google Scholar 

  6. Zheng, B.-A., Y. Matsumura, and T. Mori, Relationship Between the Thermal Denaturation and Gelling Properties of Legumin from Broad Beans, Biosci. Biotech. Biochem. 57:1087–1090 (1993).

    CAS  Google Scholar 

  7. Grinberg, V.Ya., N.V. Grinberg, T.M. Bikbov, T.K. Bronich, and A.Ya. Mashkevich, Thermotropic Gelation of Food Proteins, Food Hydrocolloids 6:69–96 (1992).

    CAS  Google Scholar 

  8. Gill, T.A., and M.A. Tung, Thermally Induced Gelation of the 12S Rapeseed Glycoprotein, J. Food Sci. 43:1481–1485 (1978).

    Article  CAS  Google Scholar 

  9. Thompson, L.U., R.F.K. Liu, and J.D. Jones, Functional Properties and Food Applications of Rapeseed Protein Concentrate, Ibid.:1175–1180 (1982).

    Article  Google Scholar 

  10. Paulson, A.T., and M.A. Tung, Thermally Induced Gelation of Succinylated Canola Protein Isolate, J. Agric. Food Chem. 37:319–326 (1989).

    Article  CAS  Google Scholar 

  11. Léger, L.W., and S.D. Arntfield, Thermal Gelation of the 12S Canola Globulin, J. Am. Oil. Chem. Soc. 70:853–861 (1993).

    Article  Google Scholar 

  12. Schwenke, K.D., Rapeseed Proteins, in New and Developing Sources of Food Proteins, edited by B.J.F. Hudson, Chapman & Hall, London, 1994, pp. 281–306.

    Google Scholar 

  13. Schwenke, K.D., B. Raab, K.-J. Linow, W. Pähtz, and J. Uhlig, On Seed Proteins. Part 13. Isolation of the 12S Globulin from Rapeseed (Brassica napus L.) and Characterization as a “Neutral” Protein, Nahrung 25:271–280 (1981).

    Article  CAS  Google Scholar 

  14. Schwenke, K.D., B. Raab, J. Uhlig, H. Tkocz, J. Behlke, M. Böttger, and U. Freimuth, Seed Proteins. Part III. The Isolation and Characterization of Albumins from Sunflower Seed and Rapeseed (in German), Ibid.:791–809 (1973).

    Article  CAS  Google Scholar 

  15. Weber, U., and M. Osborn, in The Proteins, 3rd edn., edited by H. Neurth, R.L. Hill, and C.-L. Boeder, Vol. 1, Academic Press, New York, 1975, pp. 171–223.

    Google Scholar 

  16. Laemmli, U.K., Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227:680–685 (1970).

    Article  CAS  Google Scholar 

  17. Krause, J.-P., and K.D. Schwenke, Changes in Interfacial Properties of Legumin from Faba Beans (Vicia faba L.) by Tryptic Hydrolysis, Nahrung 39:396–405 (1995).

    Article  CAS  Google Scholar 

  18. Raab, B., and K.D. Schwenke, Simplified Isolation Procedure for the 12S Globulin and the Albumin Fraction from Rapeseed (Brassica napus L.), Ibid.:863–866 (1984).

    Article  CAS  Google Scholar 

  19. Dahme, A., Gelpoint Measurements on High-Methoxyl Pectin Gels by Different Techniques, J. Texture Stud. 23:1–11 (1992).

    Article  Google Scholar 

  20. Saunders, P.R., and A.G. Ward, An Absolute Method for the Rigidity Modulus of Gelatin Gels, Proceedings of the 2nd International Congress on Rheology, Oxford, 1954, pp. 284–290.

  21. Murray, E.D., S.D. Arntfield, and M.A.H. Ismond, The Influence of Processing Parameters on Food Protein Functionality II. Factors Affecting Thermal Properties as Analyzed by Differential Scanning Calorimetry, Can. Inst. Food Sci. Technol. 18:158–162 (1985).

    CAS  Google Scholar 

  22. Schwenke, K.D., K.-J. Linow, and D. Zirwer, Modification of the Oligomeric Structure of 11S Globulin from Sunflower (Helianthus annus L.) and Rape Brassica napus L.) Seeds by Succinylation, Nahrung 30:263–270 (1986).

    Article  CAS  Google Scholar 

  23. Schwenke, K.D., B. Raab, W. Pähtz, D. Zirwer, and K.Y. Hak, Modification of the Low-Molecular Weight Basic Albumin Fraction from Rapeseed (Brassica napus L.) by Acetylation, Part 1. Chemical and Physicochemical Aspects, J. Food Biochem. 13:321–334 (1989).

    Article  CAS  Google Scholar 

  24. Krause, J.-P., R. Mothes, and K.D. Schwenke, Some Physicochemical and Interfacial Properties of Native and Acetylated Legumin from Faba Beans (Vicia faba L.), J. Agric. Food Chem. 44:429–437 (1996).

    Article  CAS  Google Scholar 

  25. Prahl, L., and K.D. Schwenke, Rheological Properties of Succinylated Protein Isolates from Faba Beans (Vicia faba L.), Nahrung 30:311 (1986).

    Article  CAS  Google Scholar 

  26. Clark, A.H., and C.D. Lee-Tuffnell, Gelation of Globular Proteins, in Functional Properties of Food Macromolecules, edited by J.R. Mitchell and D.A. Ledward, Elsevier, Amsterdam, 1986, pp. 203–272.

    Google Scholar 

  27. Doi, E., Gels and Gelling of Globular Proteins, Trends Food Sci. Technol. 4:1–5 (1993).

    Article  CAS  Google Scholar 

  28. Dickinson, E., and Matsumura, Y., Protein at Liquid Interfaces: Role of the Molten Globule State, Colloids Surfaces B: Biointerfaces 3:1–17.

  29. Whitaker, J.R., and R.E. Feeney, Chemical and Physical Modification of Proteins by the Hydroxide Ion, CRC Crit. Rev. Food Sci. Nutr. 19:173–212 (1983).

    CAS  Google Scholar 

  30. Schwenke, K.D., B. Drescher, D. Zirwer, and B. Raab, Structural Studies on the Native and Chemically Modified Low-Molecular Mass Basic Storage Protein (Napin) from Rapeseed (Brassica napus L.), Biochem. Physiol. Pflanzen 183:219–224 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Dieter Schwenke.

About this article

Cite this article

Schwenke, K.D., Dahme, A. & Wolter, T. Heat-induced gelation of rapeseed proteins: Effect of protein interaction and acetylation. J Amer Oil Chem Soc 75, 83–87 (1998). https://doi.org/10.1007/s11746-998-0015-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0015-x

Key words

Navigation