Skip to main content
Log in

Fatty acid composition, extraction, fractionation, and stabilization of bullfrog (Rana catesbeiana) oil

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The oil extracted from the fat-storage organ (fat body) of the bullfrog (Rana catesbeiana) was characterized for its fatty acid composition. The main fatty acids were palmitic (18.1%), stearic (4.1%), myristic (2.7%), oleic (31.7%), and linoleic (12.9%) acids. Long-chain polyunsaturated fatty acids were also present in significant amounts, i.e., eicosapentaenoic (1.5%) and docosahexaenoic (4.7%), and were probably derived from the fish meal content of the diet. A partially fractionated oil was extracted from the homogenized and frozen fat body with an oleic acid content of 43.2%. The natural alkaloid boldine, added at 0.5 mg/g oil level, improved the oxidative stability by a factor ranging from 1.7 to 2.4, as assessed by the Oil Stability Index method between 90 and 110°C. The stabilization effect of boldine was higher than that of naringenin, morin, and quercitin and for the synthetic antioxidant butylated hydroxytoluene at the same concentration level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lombourdis, N.S., and P. Kyriakopoulou-Sklavounou, Reproductive and Lipid Cycles in the Male Frog Rana rubibunda in Northern Greece, Comp. Biochem. Physiol. 99A:577–583 (1991).

    Article  Google Scholar 

  2. Scapin, S., P. Baldini, and P. Luly, Phospholipid and Fatty Acid Composition of Frog (Rana esculenta) Liver, A Circannual Study, Lipids 25:443–449 (1990).

    Article  CAS  Google Scholar 

  3. Gunstone, F.D., The Lipid Handbook, Chapman & Hall, London, 1986, pp. 571.

    Google Scholar 

  4. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th edn., edited by D. Firestone, AOCS, Champaign, 1990.

    Google Scholar 

  5. Ackman, R.G., Simplification of Analyses of Fatty Acids in Fish Lipids and Related Lipid Samples, Acta Med. Scand. 222:99–103 (1987).

    CAS  Google Scholar 

  6. Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7th edn., edited by C. Paquot and A. Hautfenne, Blackwell Scientific Publications, IUPAC, Oxford, 1987.

    Google Scholar 

  7. Speisky, H., B.K. Cassels, E. Lissi, and L. Videla, Antioxidant Properties of the Alkaloid Boldine in Systems Undergoing Lipid Peroxidation and Enzyme Inactivation, Biochem. Pharmacol. 41:1575–1581 (1991).

    Article  CAS  Google Scholar 

  8. Méndez, E., J. Sanhueza, H. Speisky, and A. Valenzuela, Validation of the Rancimat Test for the Assessment of the Relative Stability of Fish Oils, J. Am. Oil Chem. Soc. 73:1033–1037 (1996).

    Article  Google Scholar 

  9. Demczylo, V., J. Geille, and V. Martínez, Estadística, Ediciones de la Universidad de la República, Montevideo, Uruguay, 1984, pp. 123.

    Google Scholar 

  10. Méndez, E., Estudio de los Lípidos Extraídos de Pescados de Interés Nacional y de sus Posibles Aplicaciones, M.Sc. Thesis, Universidad de la República, Montevideo, Uruguay, 1993, pp. 143.

    Google Scholar 

  11. Ackman, R.G., Animal and Marine Lipids, in Technological Advances in Improved and Alternative Sources of Lipids, edited by B.S. Kamel and Y. Yakuda, Blackie Academic & Professional (1994), pp. 292–328.

  12. Carballal, C., I. Jachmanián, and M. Lagos, Producción de Aceite de Hígado de Merluza de Calidad Comestible. Proyecto Industrial, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 1992, pp. 232.

    Google Scholar 

  13. Litchfield, C., Analysis of Triglycerides, Academic Press, New York, 1972, pp. 248–251.

    Google Scholar 

  14. Das, N.P., and T.A. Pereira, Effects of Flavonoids on Thermal Autoxidation of Palm Oil: Structure-Activity Relationships, J. Am. Oil Chem. Soc. 67:255–257 (1990).

    Article  CAS  Google Scholar 

  15. Rojas, E., Protección de ácidos grasos poliinsaturados mediante antioxidantes de origen natural, M.Sc. Thesis, Universidad Metropolitana, Santiago, Chile, 1994, pp. 47.

    Google Scholar 

  16. Nieto, S., A. Garrido, J. Sanhueza, L.A. Loyola, G. Morales, F. Leighton, and A. Valenzuela, Flavonoids as Stabilizers of Fish Oil: An Alternative to Synthetic Antioxidants, J. Am. Oil Chem. Soc. 70:773–778 (1993).

    Article  CAS  Google Scholar 

  17. Ratty, A.K., and N.P. Das, Effects of Flavonoids on Nonenzymatic Lipid Peroxidation: Structure-Activity Reslationship, Biochem. Med. Metab. Biol. 39:69–79 (1988).

    Article  CAS  Google Scholar 

  18. Valenzuela, A., S. Nieto, B.K. Cassels, and H. Speisky. Inhibitory Effect of Boldine on Fish Oil Oxidation, J. Am. Oil Chem. Soc. 68:935–937 (1991).

    CAS  Google Scholar 

  19. Cederbaum, A., E. Kulielka, and H. Speisky, Inhibition of Rat Liver Microsomal Lipid Peroxidation by Boldine, Biochem. Pharmacol. 44:1765–1772 (1992).

    Article  CAS  Google Scholar 

  20. Hasenhuettl, G.L., and P.J. Wang, Temperature Effects of the Determination of Oxidative Stability with the Metrohm Rancimat. Ibid.:525–527 (1992).

    CAS  Google Scholar 

  21. Reynhout, G., The Effect of Temperature on the Induction Time of a Stabilized Oil, Ibid.:983–984 (1991).

    CAS  Google Scholar 

  22. Namiki, M., Antioxidants/Antimutagens in Food, Crit. Rev. Food Sci. Nutr. 29:273–300 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Méndez.

About this article

Cite this article

Méndez, E., Sanhueza, J., Nieto, S. et al. Fatty acid composition, extraction, fractionation, and stabilization of bullfrog (Rana catesbeiana) oil. J Amer Oil Chem Soc 75, 79–83 (1998). https://doi.org/10.1007/s11746-998-0012-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0012-0

Key words

Navigation