Phospholipid Profiles of Oleaginous Pressed Cakes Using NMR and Gas Chromatography

Abstract

Camelina, flaxseed, hemp, sesame, and walnut cakes were analyzed for their phospholipid (PL) content and composition using 31P and 1H nuclear magnetic resonance and gas chromatography. The data evidenced variations between the sources in terms of (1) total lipid content and PL concentration, camelina cake being the richest source of PLs, (2) PL composition, phosphatidylcholine being the most abundant phospholipid in sesame and hemp cakes, whereas phosphatidylinositol represented about 25% of the total PLs in most cakes, and (3) fatty acid composition of the PLs, camelina cake being the richest source of omega 3 polyunsaturated fatty acids. These data may be useful to diversify the PL sources available and to provide PL fractions with specific nutritional or functional properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    van Nieuwenhuyzen W, Tomas MC (2008) Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol 110:472–486

    Article  Google Scholar 

  2. 2.

    Pasini F, Riciputi Y, Verardo V, Caboni MF (2013) Phospholipids in cereals, nuts and some selected oilseeds. Recent Res Dev Lipids 9:139–201

    Google Scholar 

  3. 3.

    Matthäus B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crops Prod 12:9–18

    Article  Google Scholar 

  4. 4.

    Ramachandran R, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98:2000–2009

    CAS  Article  Google Scholar 

  5. 5.

    Quezada N, Cherian G (2012) Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur J Lipid Sci Technol 114:974–982

    CAS  Article  Google Scholar 

  6. 6.

    Salminen H, Estévez M, Kivikari R, Heinonen M (2006) Inhibition of protein and lipid oxidation by rapeseed, camelina and soy meal in cooked pork meat patties. Eur Food Res Technol 223:461–468

    CAS  Article  Google Scholar 

  7. 7.

    Elleuch M, Besbes S, Roiseux O, Blecker C, Attia H (2007) Quality characteristics of sesame seeds and by-products. Food Chem 103:641–650

    CAS  Article  Google Scholar 

  8. 8.

    Folch J, Lee M, Sloanes-Stanley GH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  9. 9.

    Wolff R, Combe N, Entressangles B (1985) Cardiolipides: purification et hydrolyse enzymatique rapide par la phospholipase A2. Rev Fr Corps Gras 32:251–255

    Google Scholar 

  10. 10.

    Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol 18:115–118

    Article  Google Scholar 

  11. 11.

    Morisson WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    Google Scholar 

  12. 12.

    Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    CAS  Article  Google Scholar 

  13. 13.

    Meneses P, Glonek T (1988) High resolution 31P NMR of extracted phospholipids. J Lipid Res 29:679–689

    CAS  Google Scholar 

  14. 14.

    Hatzakis E, Koidis A, Boskou D, Dais P (2008) Determination of phospholipids in olive oil by 31P NMR spectroscopy. J Agric Food Chem 56:6232–6240

    CAS  Article  Google Scholar 

  15. 15.

    Brinkmann-Trettenes U, Stein PC, Klösgen B, Bauer-Brandl A (2012) A method for simultaneous quantification of phospholipid species by routine 31P NMR. J Pharm Biomed Anal 70:708–712

    CAS  Article  Google Scholar 

  16. 16.

    Buré C, Solgadi A, Yen-Nicolaÿ S, Bardeau T, Libong D, Abreu S, Chaminade P, Subra-Paternault P, Cansell M (2016) Electrospray mass spectrometry as a tool to characterize phospholipid composition of plant cakes. Eur J Lipid Sci Technol 118:1282–1292

    Article  Google Scholar 

  17. 17.

    Muzi C, Camoni L, Visconti S, Aducci P (2016) Cold stress affects H+-ATPase and phospholiapse D activity in Arabidopsis. Plant Physiol Biochem 108:328–336

    CAS  Article  Google Scholar 

  18. 18.

    Gribbestad I-S, Aursand M, Martinez I (2005) High-resolution 1H magnetic resonance spectroscopy of whole fish, fillets and extracts of farmed Atlantic salmon (Salmo salar) for quality assessment and compositional analyses. Aquaculture 250:445–457

    CAS  Article  Google Scholar 

  19. 19.

    Quezada N, Cherian G (2012) Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur J Lipid Sci Technol 114:974–982

    CAS  Article  Google Scholar 

  20. 20.

    Pojić M, Mišan A, Sakač M, Dapčević Hadnađev T, Šarić B, Milovanović I, Hadnađev M (2014) Characterization of byproducts originating from hemp oil processing. J Agric Food Chem 62:12436–12442

    Article  Google Scholar 

  21. 21.

    Karaman S, Karasu S, Tornuk F, Toker O-S, Geçgel Ü, Sagdic O, Ozcan N, Gül O (2015) Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties. J Agric Food Chem 63:2305–2313

    CAS  Article  Google Scholar 

  22. 22.

    Kamal-Eldin A, Appelqvist L-A (1994) Variation in fatty acid composition of the different acyl lipids in seed oils from four Sesamum species. J Am Oil Chem Soc 71:135–139

    CAS  Article  Google Scholar 

  23. 23.

    Cunnane S-C, Ganguli S, Menard C, Liede A-C, Hamadeh M-J, Chen Z-Y, Wolever T, Jenkins D-J (1993) High α-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Br J Nutr 69:443–453

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The financial support of the French ANR agency (ANR-12-BS09-0006-01, 2012-2015) and of the Aquitaine Regional Council are greatly acknowledged. This work has benefited from the facilities and expertises of UMS3033/US001, http://www.iecb.u-bordeaux.fr/index.php/fr/plateformestechnologiques.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maud Cansell.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cansell, M., Bardeau, T., Morvan, E. et al. Phospholipid Profiles of Oleaginous Pressed Cakes Using NMR and Gas Chromatography. J Am Oil Chem Soc 94, 1219–1223 (2017). https://doi.org/10.1007/s11746-017-3022-y

Download citation

Keywords

  • Phospholipids
  • Fatty acid
  • Oleaginous cakes
  • Gas chromatography
  • Nuclear magnetic resonance