Journal of the American Oil Chemists' Society

, Volume 94, Issue 9, pp 1219–1223 | Cite as

Phospholipid Profiles of Oleaginous Pressed Cakes Using NMR and Gas Chromatography

  • Maud CansellEmail author
  • Tiphaine Bardeau
  • Estelle Morvan
  • Axelle Grélard
  • Corinne Buré
  • Pascale Subra-Paternault
Short Communication


Camelina, flaxseed, hemp, sesame, and walnut cakes were analyzed for their phospholipid (PL) content and composition using 31P and 1H nuclear magnetic resonance and gas chromatography. The data evidenced variations between the sources in terms of (1) total lipid content and PL concentration, camelina cake being the richest source of PLs, (2) PL composition, phosphatidylcholine being the most abundant phospholipid in sesame and hemp cakes, whereas phosphatidylinositol represented about 25% of the total PLs in most cakes, and (3) fatty acid composition of the PLs, camelina cake being the richest source of omega 3 polyunsaturated fatty acids. These data may be useful to diversify the PL sources available and to provide PL fractions with specific nutritional or functional properties.


Phospholipids Fatty acid Oleaginous cakes Gas chromatography Nuclear magnetic resonance 



The financial support of the French ANR agency (ANR-12-BS09-0006-01, 2012-2015) and of the Aquitaine Regional Council are greatly acknowledged. This work has benefited from the facilities and expertises of UMS3033/US001,


  1. 1.
    van Nieuwenhuyzen W, Tomas MC (2008) Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol 110:472–486CrossRefGoogle Scholar
  2. 2.
    Pasini F, Riciputi Y, Verardo V, Caboni MF (2013) Phospholipids in cereals, nuts and some selected oilseeds. Recent Res Dev Lipids 9:139–201Google Scholar
  3. 3.
    Matthäus B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crops Prod 12:9–18CrossRefGoogle Scholar
  4. 4.
    Ramachandran R, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98:2000–2009CrossRefGoogle Scholar
  5. 5.
    Quezada N, Cherian G (2012) Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur J Lipid Sci Technol 114:974–982CrossRefGoogle Scholar
  6. 6.
    Salminen H, Estévez M, Kivikari R, Heinonen M (2006) Inhibition of protein and lipid oxidation by rapeseed, camelina and soy meal in cooked pork meat patties. Eur Food Res Technol 223:461–468CrossRefGoogle Scholar
  7. 7.
    Elleuch M, Besbes S, Roiseux O, Blecker C, Attia H (2007) Quality characteristics of sesame seeds and by-products. Food Chem 103:641–650CrossRefGoogle Scholar
  8. 8.
    Folch J, Lee M, Sloanes-Stanley GH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  9. 9.
    Wolff R, Combe N, Entressangles B (1985) Cardiolipides: purification et hydrolyse enzymatique rapide par la phospholipase A2. Rev Fr Corps Gras 32:251–255Google Scholar
  10. 10.
    Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol 18:115–118CrossRefGoogle Scholar
  11. 11.
    Morisson WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608Google Scholar
  12. 12.
    Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  13. 13.
    Meneses P, Glonek T (1988) High resolution 31P NMR of extracted phospholipids. J Lipid Res 29:679–689Google Scholar
  14. 14.
    Hatzakis E, Koidis A, Boskou D, Dais P (2008) Determination of phospholipids in olive oil by 31P NMR spectroscopy. J Agric Food Chem 56:6232–6240CrossRefGoogle Scholar
  15. 15.
    Brinkmann-Trettenes U, Stein PC, Klösgen B, Bauer-Brandl A (2012) A method for simultaneous quantification of phospholipid species by routine 31P NMR. J Pharm Biomed Anal 70:708–712CrossRefGoogle Scholar
  16. 16.
    Buré C, Solgadi A, Yen-Nicolaÿ S, Bardeau T, Libong D, Abreu S, Chaminade P, Subra-Paternault P, Cansell M (2016) Electrospray mass spectrometry as a tool to characterize phospholipid composition of plant cakes. Eur J Lipid Sci Technol 118:1282–1292CrossRefGoogle Scholar
  17. 17.
    Muzi C, Camoni L, Visconti S, Aducci P (2016) Cold stress affects H+-ATPase and phospholiapse D activity in Arabidopsis. Plant Physiol Biochem 108:328–336CrossRefGoogle Scholar
  18. 18.
    Gribbestad I-S, Aursand M, Martinez I (2005) High-resolution 1H magnetic resonance spectroscopy of whole fish, fillets and extracts of farmed Atlantic salmon (Salmo salar) for quality assessment and compositional analyses. Aquaculture 250:445–457CrossRefGoogle Scholar
  19. 19.
    Quezada N, Cherian G (2012) Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur J Lipid Sci Technol 114:974–982CrossRefGoogle Scholar
  20. 20.
    Pojić M, Mišan A, Sakač M, Dapčević Hadnađev T, Šarić B, Milovanović I, Hadnađev M (2014) Characterization of byproducts originating from hemp oil processing. J Agric Food Chem 62:12436–12442CrossRefGoogle Scholar
  21. 21.
    Karaman S, Karasu S, Tornuk F, Toker O-S, Geçgel Ü, Sagdic O, Ozcan N, Gül O (2015) Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties. J Agric Food Chem 63:2305–2313CrossRefGoogle Scholar
  22. 22.
    Kamal-Eldin A, Appelqvist L-A (1994) Variation in fatty acid composition of the different acyl lipids in seed oils from four Sesamum species. J Am Oil Chem Soc 71:135–139CrossRefGoogle Scholar
  23. 23.
    Cunnane S-C, Ganguli S, Menard C, Liede A-C, Hamadeh M-J, Chen Z-Y, Wolever T, Jenkins D-J (1993) High α-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Br J Nutr 69:443–453CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Maud Cansell
    • 1
    Email author
  • Tiphaine Bardeau
    • 2
  • Estelle Morvan
    • 3
  • Axelle Grélard
    • 2
  • Corinne Buré
    • 2
  • Pascale Subra-Paternault
    • 2
  1. 1.Bordeaux INP, Université de Bordeaux, CNRS, Laboratoire Chimie et Biologie des Membranes et des Nanoobjets (CBMN-UMR 5248)PessacFrance
  2. 2.Université de Bordeaux, CNRS, Bordeaux INP, CBMN-UMR 5248PessacFrance
  3. 3.Université de Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (IECB-UMS 3033, US 001)PessacFrance

Personalised recommendations