Skip to main content

Biological Implications of Lipid Oxidation Products

Abstract

Essentially all fat-containing foods have the potential to undergo lipid oxidation even where unsaturated fatty acid compositions are low. Therefore, consumption of lipid oxidation products is potentially common with risk of consuming lipid oxidation products increasing in foods with high amounts of unsaturation (e.g. foods with omega-3 fatty acids), foods subjected to extensive thermal processing (e.g. fried foods), or food high in pro-oxidants (e.g. meats). Lipid oxidation generates potentially toxic products that have shown correlation with inflammatory diseases, as well as cancer, atherosclerosis, aging, etc. These potentially toxic products can enter the body through the diet and can develop in vivo during the digestion of lipids. Oxidation products can be absorbed into the blood and in some cases transported to tissues. The aim of this manuscript is to review how potentially toxic lipid oxidation products are formed and evaluate their potential to impact health. While lipid oxidation produces literally hundreds of oxidation products, this review focused on acrolein, 4-hydroxy-trans-nonenal, 4-hydroxy-trans-hexanal, crotonaldehyde, malondialdehyde, and cholesterol as they are the most reactive oxidation products and also the most studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Retsky K, Frei B (1995) Vitamin-C prevents metal ion-dependent initiation and propagation of lipid-peroxidation in human low-density-lipoprotein. Biochim Biophys Acta Lipids Lipid Metab 1257:279–287

    Article  Google Scholar 

  2. 2.

    Halvorsen BL, Blomhoff R (2011) Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements. Food Nutr Res 55:5792

    Article  Google Scholar 

  3. 3.

    McClements DJ, Decker EA (2008) Lipids. In: Damodarin S, Parkin K, Fennema OR (eds) Fennema’s food chemistry. CRC Press, Boca Raton

    Google Scholar 

  4. 4.

    Kanner J (2007) Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res 51(9):1094–1101

    CAS  Article  Google Scholar 

  5. 5.

    Cohn J (2002) Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol 13:19–24

    CAS  Article  Google Scholar 

  6. 6.

    Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    CAS  Article  Google Scholar 

  7. 7.

    Frankel EN (2005) Lipid oxidation, 2nd edn. The Oily Press, Cambridge

    Book  Google Scholar 

  8. 8.

    Zhang Q, Saleh ASM, Chen J, Shen Q (2012) Chemical alterations taken place during deep-fat frying based on certain reaction products: a review. Chem Phys Lipids 165:662–681

    CAS  Article  Google Scholar 

  9. 9.

    Bou R, Hanquet N, Codony R, Guardiola F, Decker EA (2010) Effect of heating oxyhemoglobin and methemoglobin on microsomes oxidation. Meat Sci 85:47–53

    CAS  Article  Google Scholar 

  10. 10.

    Waraho T, McClements DJ, Decker EA (2011) Mechanisms of lipid oxidation in food dispersions. Trends Food Sci Technol 22:3–13

    CAS  Article  Google Scholar 

  11. 11.

    Kochhar SP, Henry CJ (2009) Oxidative stability and shelf-life evaluation of selected culinary oils. Int J Food Sci Nutr 60:289–296

    CAS  Article  Google Scholar 

  12. 12.

    Frankel EN, Smith LM, Hamblin CL, Creveling RK (1984) Occurrence of cyclic fatty acid monomers in frying oils used for fast foods. J Am Oil Chem Soc 61(1):87–90

    CAS  Article  Google Scholar 

  13. 13.

    Lake RJ, Scholes P (1997) Quality and consumption of oxidized lipids from deep-frying fats and oils in New Zealand. J Am Oil Chem 74(9):1065–1068

    CAS  Article  Google Scholar 

  14. 14.

    Yagi K, Kiuchi K, Saito Y, Mike A, Kayahara N, Tatano T, Ohishi N (1986) Use of a new methylene blue derivative for determination of lipid peroxides in foods. Biochem Intern 12(2):367–371

    CAS  Google Scholar 

  15. 15.

    Gerrior SA, Bente L (2001) The interactive food supply: an on-line connection to food and nutrient information. FASEB J 15(5):A746

    Google Scholar 

  16. 16.

    U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary guidelines for Americans. http://health.gov/dietaryguidelines/2015/guidelines/. Accessed May 2016

  17. 17.

    Albert BB, Derraik JGB, Cameron-Smith D, Hofman PL, Tumanov S, Villas-Boas SG, Garg ML, Cutfield WS (2015) Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci Rep 5:7928

    CAS  Article  Google Scholar 

  18. 18.

    Martinez-Yusta A, Goicoechea E, Guillen MD (2014) A review of thermo-oxidative degradation of food lipids studied by H-1 NMR spectroscopy: influence of degradative conditions and food lipid nature. Compr Rev Food Sci Food Saf 13:838–859

    CAS  Article  Google Scholar 

  19. 19.

    Semchyshyn HM (2014) Reactive carbonyl species in vivo: generation and dual biological effects. Sci World J 2014:10. doi:10.1155/2014/417842

    Article  Google Scholar 

  20. 20.

    Aw TY, Wierzbicka G, Jones DP (1991) Oral glutathione increases tissue glutathione in vivo. Chem Biol Interact 80(1):89–97

    CAS  Article  Google Scholar 

  21. 21.

    Wilson R, Lyall K, Smyth L, Fernie C, Riemersma R (2002) Dietary hydroxy fatty acids are absorbed in humans: implications for the measurement of ‘oxidative stress’ in vivo. Free Radic Biol Med 32:162–168

    CAS  Article  Google Scholar 

  22. 22.

    Staprans I, Rapp JH, Pan XM, Kim KY, Feingold KR (1994) Oxidized lipids in the diet are a source of oxidized lipid in chylomicrons of human serum. Arterioscler Thromb 14(12):1900–1905

    CAS  Article  Google Scholar 

  23. 23.

    Nuora A, Chiang VS, Milan AM, Tarvainen M, Pundir S, Quek S, Smith GC, Markworth JF, Ahotupa M, Cameron-Smith D, Linderborg KM (2015) The impact of beef steak thermal processing on lipid oxidation and postprandial inflammation related responses. Food Chem 184:57–64

    CAS  Article  Google Scholar 

  24. 24.

    Williams MJ, Sutherland WH, McCormic MP, de Jong SA, Walker RJ, Wilkins GT (1999) Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol 33(4):1050–1055

    CAS  Article  Google Scholar 

  25. 25.

    Ottestad I, Vogt G, Retterstol K, Myhrstad MC, Haugen J, Nilsson A, Ravn-Haren G, Nordvi B, Bronner KW, Andersen LF, Holven KB, Ulven SM (2012) Oxidised fish oil does not influence established markers of oxidative stress in healthy human subjects: a randomised controlled trial. Br J Nutr. 108:315–326

    CAS  Article  Google Scholar 

  26. 26.

    Kanazawa K, Ashida H (1998) Dietary hydroperoxides of linoleic acid decompose to aldehydes in stomach before being absorbed into the body. Biochim Biophys Acta 1393(2-3):349–361

    CAS  Article  Google Scholar 

  27. 27.

    Palay SL, Karlin LJ (1959) An electron microscopic study of the intestinal villus. 2. the pathway of fat absorption. J Biophys Biochem Cytol 5(3):373

    CAS  Article  Google Scholar 

  28. 28.

    Ewert A, Granvogl M, Schieberle P (2014) Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. J Agric Food Chem 62:8524–8529

    CAS  Article  Google Scholar 

  29. 29.

    Endo Y, Hayashi C, Yamanaka T, Takayose K, Yamaoka M, Tsuno T, Nakajima S (2013) Linolenic acid as the main source of acrolein formed during heating of vegetable oils. J Am Oil Chem Soc 90(7):959–964

    CAS  Article  Google Scholar 

  30. 30.

    Procida G, Cichelli A, Compagnone D, Maggio RM, Cerretani L, Carlo MD (2009) Influence of chemical composition of olive oil on the development of volatile compounds during frying. Eur Food Res Technol 230(2):217–229

    CAS  Article  Google Scholar 

  31. 31.

    Wang GW, Guo Y, Vondriska TM, Zhang J, Zhang S, Tsai LL, Zong NC, Bolli R, Bhatnagar A, Prabhu SD (2008) Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol 44:1016–1022

    CAS  Article  Google Scholar 

  32. 32.

    Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S (2015) Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 143(2):242–255

    CAS  Article  Google Scholar 

  33. 33.

    Agency for toxic substances and disease registry. Toxicological profile for acrolein. http://www.atsdr.cdc.gov/toxprofiles/tp124.pdf. Accessed Nov 2015

  34. 34.

    Vander Jagt DL, Hunsaker LA, Vander Jagt TJ, Gomez MS, Gonzales DM, Deck LM, Royer RE (1997) Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem Pharma 53(8):1133–1140

    CAS  Article  Google Scholar 

  35. 35.

    Ismahil MA, Hamid T, Haberzettl P, Gu T, Chandrasekar B, Srivastava S, Bhatnagar A, Prabhu SD (2011) Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 301(5):H2050–H2060

    CAS  Article  Google Scholar 

  36. 36.

    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 7(2):27–31

    Article  Google Scholar 

  37. 37.

    Burcham PC, Raso A, Kaminskas LM (2012) Chaperone heat shock protein 90 mobilization and hydralazine cytoprotection against acrolein-induced carbonyl stress. Mol Pharmacol 82(5):876–886

    CAS  Article  Google Scholar 

  38. 38.

    Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Miyata T, Noguchi N, Niki E, Osawa T (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci USA 95:4882–4887

    CAS  Article  Google Scholar 

  39. 39.

    Granvogl M (2014) Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food. J Agric Food Chem 62:1272–1282

    CAS  Article  Google Scholar 

  40. 40.

    Earley JH, Bourne RA, Watson MJ, Poliakoff M (2015) Continuous catalytic upgrading of ethanol to n-butanol and >C-4 products over Cu/CeO2 catalysts in supercritical CO2. Green Chem 17:3018–3025

    CAS  Article  Google Scholar 

  41. 41.

    Eder E, Budiawan SD (2001) Cancer risk assessment for the environmental mutagen and carcinogen crotonaldehyde on the basis of TD50 and comparison with 1, N-2-propanodeoxyguanosine adduct levels. Cancer Epidemiol Biomark Prev 10(8):883–888

    CAS  Google Scholar 

  42. 42.

    Chung FL, Tanaka T, Hecht SS (1986) Induction of liver tumors in F344 rats by crotonaldehyde. Canc Res 46(3):1285–1289

    CAS  Google Scholar 

  43. 43.

    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    CAS  Article  Google Scholar 

  44. 44.

    Long EK, Picklo MJSR (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49:1–8

    CAS  Article  Google Scholar 

  45. 45.

    Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(5):779–786

    Google Scholar 

  46. 46.

    Oberley TD, Toyokuni S, Szweda LI (1999) Localization of hydroxynonenal protein adducts in normal human kidney and selected human kidney cancers. Free Radic Biol Med 27(5-6):695–703

    CAS  Article  Google Scholar 

  47. 47.

    Oberley TC, Zhong W, Szweda LI, Oberley LW (2000) Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate 44(2):144–155

    CAS  Article  Google Scholar 

  48. 48.

    Kondo S, Toyokuni S, Iwasa Y, Tanaka T, Onodera H, Hiai H, Imamura M (1999) Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic Biol Med 27(3–4):401–410

    CAS  Article  Google Scholar 

  49. 49.

    Seppanen CM, Csallany AS (2004) Incorporation of the toxic aldehyde 4-hydroxy-2-trans-nonenal into food fried in thermally oxidized soybean oil. J Am Oil Chem 81(12):1137–1141

    CAS  Article  Google Scholar 

  50. 50.

    Surh JL, Kwon SH (2007) 4-Hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products. Food Addit Contam 24:1209–1218

    CAS  Article  Google Scholar 

  51. 51.

    Viau M, Genot C, Ribourg L, Meynier A (2016) Amounts of the reactive aldehydes, malonaldehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in fresh and oxidized edible oils do not necessary reflect their peroxide and anisidine values. Eur J Lipid Sci Technol 118:435–444

    CAS  Article  Google Scholar 

  52. 52.

    Tirosh O, Shpaizer A, Kanner J (2015) Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: the mediterranean versus western diet. J Agric Food Chem 63(31):7016–7023

    CAS  Article  Google Scholar 

  53. 53.

    Ayala A, Muñoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:31

    Article  Google Scholar 

  54. 54.

    Ando K, Beppu M, Kikugawa K (1995) Evidence for accumulation of lipid hydroperoxides during the aging of human red-blood-cells in the circulation. Biol Pharm Bull 18(5):659–663

    CAS  Article  Google Scholar 

  55. 55.

    Voitkun V, Zhitkovich A (1999) Analysis of DNA-protein crosslinking activity of malondialdehyde in vitro. Mutat Res Fund Mol Mech Mut 424(1-2):97–106

    CAS  Article  Google Scholar 

  56. 56.

    Sun X, Nair J, Bartsch H (2004) A modified immuno-enriched P-32-postlabeling method for analyzing the malondialdehyde-deoxyguanosine adduct, 3-(2-deoxy-beta-d-erythro-pentofuranosyl)-pyrimido [1,2-alpha]purin-10(3H)one in human tissue samples. Chem Res Toxicol 17:268–272

    CAS  Article  Google Scholar 

  57. 57.

    Vejux A, Samadi M, Lizard G (2011) Contribution of cholesterol and oxysterols in the physiopathology of cataract: implication for the development of pharmacological treatments. J Opthalmol 2011:471947

    Google Scholar 

  58. 58.

    Guardiola F, Dutta PC, Codony R, Savage GP (2002) Cholesterol and phytosterol oxidation products: analysis, occurrence, and biological effects. AOCS Press, Champaign

    Google Scholar 

  59. 59.

    Smith LL, Johnson BH (1989) Biological activities of oxysterols. Free Rad Biol Med 7:285–332

    CAS  Article  Google Scholar 

  60. 60.

    Ringseis R, Eder K (2005) Effects of dietary fat and oxidized cholesterol on gene expression in rat liver as assessed by cDNA expression array analysis. Eur J Nutr 44(4):231–241

    CAS  Article  Google Scholar 

  61. 61.

    Staprans I, Pan XM, Rapp JH, Reingold KR (2005) Development of atherosclerosis. Mol Nutr Food Red 49(11):1075–1082

    CAS  Article  Google Scholar 

  62. 62.

    Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, Engell RE, Powles J, Ezzati M, Mozaffarian D (2014) Global burden dis nutr chronic dis global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. Br Med J 348:g2272

    Article  Google Scholar 

  63. 63.

    Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042

    CAS  Article  Google Scholar 

  64. 64.

    Baynes JW (2007) Dietary ALEs are a risk to human health—NOT! Mol Nutr Food Res 51(9):1102–1106

    CAS  Article  Google Scholar 

  65. 65.

    Ryu JH, Paik IY, Woo JH, Shin KO, Cho SY, Roh HT (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28(2):450–455

    Article  Google Scholar 

  66. 66.

    Salvolini E, Martarelli D, Giorgio RD, Mazzanti L, Procaccini M, Curatola G (2000) Age-related modifications in human unstimulated whole saliva: a biochemical study. Aging Clin Exp Res 12(6):445–448

    CAS  Article  Google Scholar 

  67. 67.

    Kanner J, Lapidot T (2001) The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med 31(11):1388–1395

    CAS  Article  Google Scholar 

  68. 68.

    Gobert M, Remond D, Loonis M, Buffiere C, Dante-Lhoutelllier V, Dufour C (2014) Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food Funct 5(9):2166–2174

    CAS  Article  Google Scholar 

  69. 69.

    Kristinova V, Storro I, Rustad T (2013) Influence of human gastric juice on oxidation of marine lipids—in vitro study. Food Chem 141:3859–3871

    CAS  Article  Google Scholar 

  70. 70.

    Lorrain B, Dangles O, Loonis M, Armand M, Dufour C (2012) Dietary iron-initiated lipid oxidation and its inhibition by polyphenols in gastric conditions. J Agric Food Chem 60:9074–9081

    CAS  Article  Google Scholar 

  71. 71.

    Tullberg C, Larsson K, Carlsson N, Comi I, Scheers N, Vegarud G, Undeland I (2016) Formation of reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: comparison of human and porcine in vitro digestion models. Food Funct 7:1401–1412

    CAS  Article  Google Scholar 

  72. 72.

    Chan KM, Decker EA (1994) Endogenous skeletal muscle antioxidants. Food Sci Nutr 34:403–426

    CAS  Google Scholar 

  73. 73.

    Lomaestro BM, Malone M (1995) Glutathione in health and disease: pharmacotherapeutic issues. Ann Pharmacother 29(12):1263–1273

    CAS  Article  Google Scholar 

  74. 74.

    Tanel A, Averill-Bates DA (2007) Inhibition of acrolein-induced apoptosis by the antioxidant N-acetylcysteine. J Pharm Exp Ther 321(1):73–83

    CAS  Article  Google Scholar 

  75. 75.

    Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The Flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Bio Chem 279(26):26846–26857

    CAS  Article  Google Scholar 

  76. 76.

    Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longevity 2(5):270–278

    Article  Google Scholar 

  77. 77.

    Gorelik S, Ligumswky M, Kohen R, Kanner J (2008) A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products. Faseb 22(1):41–46

    CAS  Article  Google Scholar 

  78. 78.

    Van Hecke T, Wouters A, Rombouts C, Izzati T, Berardo A, Vossen E, Claeys E, Van Camp J, Raes K, Vanhaecke L, Peeters M, De Vos WH, De Smet S (2016) Reducing compounds equivocally influence oxidation during digestion of a high-fat beef product, which promotes cytotoxicity in colorectal carcinoma cell lines. J Agric Food Chem 64:1600–1609

    Article  Google Scholar 

  79. 79.

    Decker EA (1997) Phenolics: prooxidants or antioxidants. Nutr Rev 55:396–398

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric A. Decker.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieira, S.A., Zhang, G. & Decker, E.A. Biological Implications of Lipid Oxidation Products. J Am Oil Chem Soc 94, 339–351 (2017). https://doi.org/10.1007/s11746-017-2958-2

Download citation

Keywords

  • Lipid oxidation
  • α,β-Unsaturated carbonyls
  • Acrolein
  • 4-Hydroxy-trans-nonenal
  • 4-Hydroxy-trans-hexanal
  • Crotonaldehyde
  • Malonaldehyde
  • Cholesterol
  • Core aldehydes
  • Toxicity