Skip to main content
Log in

Biodiesel Synthesis from Palm Fatty Acid Distillate Using Tungstophosphoric Acid Supported on Cesium-Containing Niobia

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Tungstophosphoric acid supported on cesium-containing niobia (TPA/Cs x /Nb2O5, x = 1.0–2.5) catalysts were prepared by a two-step impregnation method, and their physico-chemical properties were investigated. The initial studies on the esterification of oleic acid with methanol revealed that TPA/Cs ratio affected the acidity as well as the activity of the catalysts. Among the catalysts tested, TPA/Cs1.0/Nb2O5 exhibited the best performance. In addition, the efficiency of TPA/Cs1.0/Nb2O5 for biodiesel synthesis from palm fatty acid distillate (PFAD), a by-product from palm oil industry, was demonstrated, and the reaction parameters were also evaluated. Over 90% yield of FAME was achieved, and the properties of the biodiesel obtained from PFAD met the standard requirements for biodiesel fuel. However, deactivation of the catalysts was observed, possibly due to structural transformation or organic residues blocking the active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  2. Encinar JM, González JF, Rodríguez-Reinares A (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process Technol 88:513–522

    Article  CAS  Google Scholar 

  3. Ab Gapor MdT (2010) Production and utilization of palm fatty acid distillate (PFAD). Lipid Technol 22:11–13

    Article  Google Scholar 

  4. Pasias S, Barakos N, Alexopoulos C, Papayannakos N (2006) Heterogeneously catalyzed esterification of FFAs in vegetable oils. Chem Eng Technol 29:1365–1371

    Article  CAS  Google Scholar 

  5. Tesser R, Di Serio M, Guida M, Nastasi M, Santacesaria E (2005) Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind Eng Chem Res 44:7978–7982

    Article  CAS  Google Scholar 

  6. Mbaraka IK, McGuire KJ, Shanks BH (2006) Acidic mesoporous silica for the catalytic conversion of fatty acids in beef tallow. Ind Eng Chem Res 45:3022–3028

    Article  CAS  Google Scholar 

  7. Ramu S, Lingaiah N, Prabhavathi Devi BLA, Prasad RBN, Suryanarayana I, Sai Prasad PS (2004) Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Appl Catal A 276:163–168

    Article  CAS  Google Scholar 

  8. Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production—Towards sustainable energy. Adv Synth Catal 348:75–81

    Article  CAS  Google Scholar 

  9. Park Y-M, Lee D-W, Kim D-K, Lee J-S, Lee K-Y (2008) The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal Today 131:238–243

    Article  CAS  Google Scholar 

  10. Lou W-Y, Zong M-H, Duan Z-Q (2008) Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour Technol 99:8752–8758

    Article  CAS  Google Scholar 

  11. Xu L, Yang X, Yu X, Guo Y, Maynurkader (2008) Preparation of mesoporous polyoxometalate-tantalum pentoxide composite catalyst for efficient esterification of fatty acid. Catal Commun 9:1607–1611

    Article  CAS  Google Scholar 

  12. Alsalme A, Kozhevnikova EF, Kozhevnikov IV (2008) Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Appl Catal A 349:170–176

    Article  CAS  Google Scholar 

  13. Talukder MMR, Wu JC, Lau SK, Cui LC, Shimin G, Lim A (2009) Comparison of Novozym 435 and Amberlyst 15 as heterogeneous catalyst for production of biodiesel from palm fatty acid distillate. Energy Fuels 23:1–4

    Article  CAS  Google Scholar 

  14. Chin LH, Abdullah AZ, Hameed BH (2012) Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chem Eng J 183:104–107

    Article  CAS  Google Scholar 

  15. Olutoye MA, Wong CP, Chin LH, Hameed BH (2014) Synthesis of FAME from the methanolysis of palm fatty acid distillate using highly active solid oxide acid catalyst. Fuel Process Technol 124:54–60

    Article  CAS  Google Scholar 

  16. Mongkolbovornkij P, Champreda V, Sutthisripok W, Laosiripojana N (2010) Esterification of industrial-grade palm fatty acid distillate over modified ZrO2 (with WO3–, SO4– and TiO2–): effects of co-solvent adding and water removal. Fuel Process Technol 91:1510–1516

    Article  CAS  Google Scholar 

  17. Chabukswar DD, Heer PKKS, Gaikar VG (2013) Esterification of palm fatty acid distillate using heterogeneous sulfonated microcrystalline cellulose catalyst and its comparison with H2SO4 catalyzed reaction. Ind Eng Chem Res 52:7316–7326

    Article  CAS  Google Scholar 

  18. Babadi FE, Hosseini S, Soltani SM, Aroua MK, Shamiri A, Samadi M (2016) Sulfonated beet pulp as solid catalyst in one-step esterification of industrial palm fatty acid distillate. J Am Oil Chem Soc 93:319–327

    Article  CAS  Google Scholar 

  19. Corma A, Martı́nez A, Martı́nez C (1996) Acidic Cs+, NH4 +, and K+ salts of 12-tungstophosphoric acid as solid catalysts for isobutane/2-butene alkylation. J Catal 164:422–432

    Article  CAS  Google Scholar 

  20. Kulkarni MG, Gopinath R, Meher LC, Dalai AK (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem 8:1056–1062

    Article  CAS  Google Scholar 

  21. Nakajima K, Baba Y, Noma R, Kitano M, N. Kondo J, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites. J Am Chem Soc 133:4224–4227

    Article  CAS  Google Scholar 

  22. Forni L (1974) Comparison of the methods for determination of surface acidity of solid catalysts. Catal Rev 8:65–115

    Article  Google Scholar 

  23. Gelbard G, Brès O, Vargas RM, Vielfaure F, Schuchardt UF (1995) 1H nuclear magnetic resonance determination of the yield of the transesterification of rapseed oil with methanol. J Am Oil Chem Soc 72:1239–1241

    Article  CAS  Google Scholar 

  24. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2007) Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb2O5 catalyst. J Catal 250:342–349

    Article  CAS  Google Scholar 

  25. Tatematsu S, Hibi T, Okuhara T, Misono M (1984) Preparation process and catalytic acitity of Cs x H3-x PW12O40. Chem Lett 6:865–868

    Article  Google Scholar 

  26. Dias JA, Caliman E, Loureiro Dias SC (2004) Effects of cesium ion exchange on acidity of 12-tungstophosphoric acid. Microporous Mesoporous Mater 76:221–232

    Article  CAS  Google Scholar 

  27. Narasimharao K, Brown DR, Lee AF, Newman AD, Siril PF, Tavener SJ, Wilson K (2007) Structure–activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J Catal 248:226–234

    Article  CAS  Google Scholar 

  28. Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M (2000) Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis. Chem Mater 12:2230–2238

    Article  CAS  Google Scholar 

  29. Aranda DG, Santos RP, Tapanes NO, Ramos A, Antunes O (2008) Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal Lett 122:20–25

    Article  CAS  Google Scholar 

  30. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

  31. Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075

    Article  CAS  Google Scholar 

  32. May CY, Liang YC, Foon CS, Ngan MA, Cheng Hook C, Basiron Y (2005) Key fuel properties of palm oil alkyl esters. Fuel 84:1717–1720

    CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Thailand Research Fund (MRG5280098) and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education are gratefully acknowledged. The authors also acknowledge the support of National Metal and Materials Technology through the P-10-10382 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonggol Tantirungrotechai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surasit, C., Yoosuk, B., Pohmakotr, M. et al. Biodiesel Synthesis from Palm Fatty Acid Distillate Using Tungstophosphoric Acid Supported on Cesium-Containing Niobia. J Am Oil Chem Soc 94, 465–474 (2017). https://doi.org/10.1007/s11746-016-2937-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2937-z

Keywords

Navigation