Skip to main content

Energy Additivity Approaches to QSPR Modeling in Estimation of Dynamic Viscosity of Fatty Acid Methyl Ester and Biodiesel

Abstract

Viscosity is an important physical property of fatty acid methyl esters (FAME) and biodiesel (mixture of FAMEs). In this work, quantitative structure–property relationship (QSPR) for estimation of dynamic viscosity of FAMEs and biodiesel is approached via the Gibbs energy additivity method. The Gibbs energy of dynamic viscous flow is simply derived from the sum of the Gibbs energy of kinematic viscous flow and Gibbs energy of volumetric expansion. The derived model can be used for estimation of dynamic viscosity of saturated and unsaturated FAMEs commonly found in nature. Also, the proposed model can be extended to a mixture of FAMEs or biodiesel as well as biodiesel blends. Thus, the dynamic viscosity of FAMEs as well as neat and blended biodiesels can be estimated by the same equation from the carbon number (z) and number of double bonds (n d) at different temperature (T). The average absolute deviation (AAD) values for saturated, unsaturated FAMEs, biodiesels, and biodiesel blends (at 20–100 °C) are approximately the same as the original model for estimation of kinematic viscosity.

This is a preview of subscription content, access via your institution.

References

  1. Rackett HG (1970) Equation of state for saturated liquids. J Chem Eng Data 15:514–517. doi:10.1021/je60047a012

    Article  CAS  Google Scholar 

  2. Elbro HS, Fredenslund A, Rasmussen P (1991) Group contribution method for the prediction of liquid densities as a function of temperature for solvents, oligomers, and polymers. Ind Eng Chem Res 30:2576–2582. doi:10.1021/ie00060a011

    Article  CAS  Google Scholar 

  3. Ramírez-Verduzco LF, García-Flores BE, Rodríguez-Rodríguez JE, del Rayo Jaramillo-Jacob A (2011) Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel 90:1751–1761. doi:10.1016/j.fuel.2010.12.032

    Article  Google Scholar 

  4. Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K, Krisnangkura K (2014) Estimation of density of biodiesel. Energy Fuels 28:4633–4641. doi:10.1021/ef501031z

    Article  CAS  Google Scholar 

  5. Andrade ENDC (1930) The viscosity of liquids. Nature 125:309–310

    Article  Google Scholar 

  6. Tat M, Van Gerpen J (1999) The kinematic viscosity of biodiesel and its blends with diesel fuel. J Am Oil Chem Soc 76:1511–1513. doi:10.1007/s11746-999-0194-0

    Article  CAS  Google Scholar 

  7. Allen CAW, Watts KC, Ackman RG, Pegg MJ (1999) Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel 78:1319–1326. doi:10.1016/S0016-2361(99)00059-9

    Article  CAS  Google Scholar 

  8. Basso RC, Meirelles AJdA, Batista EAC (2013) Densities and viscosities of fatty acid ethyl esters and biodiesels produced by ethanolysis from palm, canola, and soybean oils: experimental data and calculation methodologies. Ind Eng Chem Res 52:2985–2994. doi:10.1021/ie3026899

    Article  CAS  Google Scholar 

  9. Ramírez Verduzco LF (2013) Density and viscosity of biodiesel as a function of temperature: empirical models. Renew Sustain En Rev 19:652–665. doi:10.1016/j.rser.2012.11.022

    Article  Google Scholar 

  10. Chavarria-Hernandez JC, Pacheco-Catalán DE (2014) Predicting the kinematic viscosity of FAMEs and biodiesel: empirical models. Fuel 124:212–220. doi:10.1016/j.fuel.2014.01.105

    Article  CAS  Google Scholar 

  11. Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K, Krisnangkura K (2014) Estimation of surface tension of fatty acid methyl ester and biodiesel at different temperatures. Fuel 126:162–168. doi:10.1016/j.fuel.2014.02.054

    Article  CAS  Google Scholar 

  12. Katritzkya AR, Karelsonb M, Lobanova VS (1997) QSPR as a means of predicting and understanding chemical and physical properties in terms of structure. Pure Appl Chem 69:245–248. doi:10.1351/pac199769020245

    Google Scholar 

  13. Ihmels EC, Gmehling J (2003) Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities. Ind Eng Chem Res 42:408–412. doi:10.1021/ie020492j

    Article  CAS  Google Scholar 

  14. Pratas MJ, Freitas S, Oliveira MB, SlC Monteiro, AlS Lima, JoAP Coutinho (2010) Densities and viscosities of fatty acid methyl and ethyl esters. J Chem Eng Data 55:3983–3990. doi:10.1021/je100042c

    Article  CAS  Google Scholar 

  15. Schedemann A, Wallek T, Zeymer M, Maly M, Gmehling J (2013) Measurement and correlation of biodiesel densities at pressures up to 130 MPa. Fuel 107:483–492. doi:10.1016/j.fuel.2012.11.084

    Article  CAS  Google Scholar 

  16. Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K, Krisnangkura K (2015) An empirical equation for estimation of kinematic viscosity of fatty acid methyl esters and biodiesel. J Am Oil Chem Soc 92:1051–1061. doi:10.1007/s11746-015-2667-7

    Article  CAS  Google Scholar 

  17. do Carmo FR, Sousa PM Jr, Santiago-Aguiar RS, de Sant’Ana HB (2012) Development of a new model for biodiesel viscosity prediction based on the principle of corresponding state. Fuel 92:250–257

    Article  CAS  Google Scholar 

  18. Krisnangkura K, Sansa-ard C, Aryusuk K, Lilitchan S, Kittiratanapiboon K (2010) An empirical approach for predicting kinematic viscosities of biodiesel blends. Fuel 89:2775–2780. doi:10.1016/j.fuel.2010.04.033

    Article  CAS  Google Scholar 

  19. Pratas MJ, Freitas S, Oliveira MB, SlC Monteiro, AlS Lima, JoAP Coutinho (2011) Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. J Chem Eng Data 56:2175–2180. doi:10.1021/je1012235

    Article  CAS  Google Scholar 

  20. Freitas SVD, Pratas MJ, Ceriani R, AlS Lima, JoAP Coutinho (2011) Evaluation of predictive models for the viscosity of biodiesel. Energy Fuels 25:352–358. doi:10.1021/ef101299d

    Article  CAS  Google Scholar 

  21. Feitosa FX, Rodrigues MdL, Veloso CB, ClL Cavalcante, MnCG Albuquerque, de Sant’Ana HB (2010) Viscosities and densities of binary mixtures of coconut + colza and coconut + soybean biodiesel at various temperatures. J Chem Eng Data 55:3909–3914. doi:10.1021/je901060j

    Article  CAS  Google Scholar 

  22. Nogueira CA, Feitosa FX, Fernandes FAN, RlS Santiago, de Sant’Ana HB (2010) Densities and viscosities of binary mixtures of babassu biodiesel + cotton seed or soybean biodiesel at different temperatures. J Chem Eng Data 55:5305–5310. doi:10.1021/je1003862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially support by National Research University Project of Thailand’s Office of the Higher Education Commission and Energy Planning and Policy Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanit Krisnangkura.

Appendix

Appendix

Gibbs energy additivity for biodiesel (mixture of FAME),

$$\Delta G\; = \;x_{1} \Delta G_{1} \; + \;x_{2} \Delta G_{2} \; + \;x_{3} \Delta G_{3} \ldots x_{m} \Delta G_{m}$$
(A1)
$$\Delta G\; = \;\sum\limits_{i = 1}^{m} {x_{i} \Delta G_{i} }$$
(A2)

Equation A2 is similar to Eq. 3, where x i is mole or mass fraction and ΔG 1…m are the Gibbs energy contribution from each FAME.

Expanding Eq. A2 to its enthalpy and entropy forms,

$$\begin{aligned} \Delta G\; = \;x_{1} \left( {s_{0,\rho } \; + \;s_{1,\rho } z_{1} \; + \;s_{2,\rho } n_{{{\text{d}}1}} \; + \;\frac{{h_{0,\rho } \; + \;h_{1,\rho } z_{1} \; + \;h_{2,\rho } n_{{{\text{d}}1}} }}{T}} \right)\; + \;x_{2} \left( {s_{0,\rho } \; + \;s_{1,\rho } z_{2} \; + \;s_{2,\rho } n_{{{\text{d}}2}} \; + \;\frac{{h_{0,\rho } \; + \;h_{1,\rho } z_{2} \; + \;h_{2,\rho } n_{{{\text{d}}2}} }}{T}} \right) + \hfill \\ \, x_{3} \left( {s_{0,\rho } \; + \;s_{1,\rho } z_{3} \; + \;s_{2,\rho } n_{{{\text{d}}3}} \; + \;\frac{{h_{0,\rho } \; + \;h_{1,\rho } z_{3} \; + \;h_{2,\rho } n_{{{\text{d}}3}} }}{T}} \right)\; + \; \ldots x_{m} \left( {s_{0,\rho } \; + \;s_{1,\rho } z_{m} \; + \;s_{2,\rho } n_{\text{dm}} \; + \;\frac{{h_{0,\rho } \; + \;h_{1,\rho } z_{m} \; + \;h_{2,\rho } n_{\text{dm}} }}{T}} \right), \hfill \\ \end{aligned}$$
(A3)

Rearranging,

$$\begin{aligned} \Delta G\; = \;s_{0,\rho } \left( {x_{1} \; + \;x_{2} \; + \;x_{3} \; + \cdots x_{m} } \right)\; + \;s_{1,\rho } \left( {x_{1} z_{1} \; + \;x_{2} z_{2} \; + \;x_{3} z_{3} \; + \cdots x_{m} z_{m} } \right) + \hfill \\ \, s_{2,\rho } \left( { \, x_{1} n_{{{\text{d}}1}} \; + \;x_{2} n_{{{\text{d}}2}} + x_{3} n_{{{\text{d}}3}} + \cdots x_{m} n_{\text{dm}} } \right)\; + \cdots \frac{{h_{0,\rho } }}{T}\left( {x_{1} \; + \;x_{2} \; + \;x_{3} + \cdots x_{m} } \right) + \hfill \\ \, \frac{{h_{1,\rho } }}{T}\left( {x_{1} z_{1} \; + \;x_{2} z_{2} \; + \;x_{3} z_{3} \; + \cdots x_{m} z_{m} } \right) + \frac{{h_{2,\rho } }}{T}\left( { \, x_{1} n_{{{\text{d}}1}} + x_{2} n_{{{\text{d}}2}} + x_{3} n_{{{\text{d}}3}} + \cdots x_{m} n_{\text{dm}} } \right) \hfill \\ \end{aligned}$$
(A4)

Averaging,

$$\Delta G\; = \;s_{0,\rho } \; + \;s_{1,\rho } \frac{{\sum\limits_{i = 1}^{m} {x_{i} z_{i} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}\; + \;s_{2,\rho } \frac{{\sum\limits_{i = 1}^{m} {x_{i} n_{di} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}\; + \;\frac{{h_{0,\rho } }}{T}\; + \;\frac{{h_{1,\rho } }}{T}\frac{{\sum\limits_{i = 1}^{m} {x_{i} z_{i} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}\; + \;\frac{{h_{2,\rho } }}{T}\frac{{\sum\limits_{i = 1}^{m} {x_{i} n_{di} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}$$
(A5)

And \(z_{\text{ave}} \; = \;\frac{{\sum\limits_{i = 1}^{m} {x_{i} z_{i} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}\); \(n_{\text{d(ave)}} \; = \;\frac{{\sum\limits_{i = 1}^{m} {x_{i} n_{di} } }}{{\sum\limits_{i = 1}^{m} {x_{i} } }}.\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisnangkura, K., Aryusuk, K., Phankosol, S. et al. Energy Additivity Approaches to QSPR Modeling in Estimation of Dynamic Viscosity of Fatty Acid Methyl Ester and Biodiesel. J Am Oil Chem Soc 93, 1407–1414 (2016). https://doi.org/10.1007/s11746-016-2874-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2874-x

Keywords