Journal of the American Oil Chemists' Society

, Volume 93, Issue 9, pp 1211–1220 | Cite as

Effect of Roasting on Physicochemical Properties of Wild Almonds (Amygdalus scoparia)

  • Mohammad HojjatiEmail author
  • Leontina Lipan
  • Ángel A. Carbonell-Barrachina
Original Paper


Roasting enhances sensory quality of wild almonds (Amygdalus scoparia). The aim of the study was to evaluate the use of microwaves (480 W for 3 or 4 min) in roasting of wild almonds in comparison with traditional Spanish (165 °C for 20 min) and Iranian (soaking in 20 % NaCl in water for 30 min, drying at 60 °C for 2 h and roasting at 135 °C for 20 min) hot-air processes. The influence of roasting wild almonds on moisture and oil contents, crispness, fatty acid profile, volatile compounds, and odour intensity was investigated. Roasting causes changes in appearance, texture and flavour, due to dehydration, browning, lipid oxidation, and diverse structural changes. The moisture content and hardness of the samples significantly decreased with all roasting methods. Roasting resulted in higher amounts of characteristics aroma compounds and only microwave roasting increased the oil content. The final recommendation is that microwave roasting at 480 W for 4 min led to roasted almonds of high physicochemical [dark and intense colour (L*44.9, a*8.4, and b*19.6), the highest content of total volatile compounds (132 mg kg−1), 85.2 % of unsaturated fatty acids], and sensory (high intensity of “roasted almond” aroma) quality. Microwaves can be used for roasting wild almond as a quick, safe, and economical method.


Fatty acids GC–MS Instrumental hardness Microwave Volatile compounds 



This work was funded by Ramin Agriculture and Natural Resources University of Khuzestan.


  1. 1.
    Sang S, Cheng X, Fu H-Y, Shieh D-E, Bai N, Lapsley K, Stark RE, Rosen RT, Ho C-T (2002) New type sesquiterpene lactone from almond hulls (Prunus amygdalus Batsch). Tetrahedron Lett 43:2547–2549CrossRefGoogle Scholar
  2. 2.
    Xiao L, Lee J, Zhang G, Ebeler SE, Wickramasinghe N, Seiber J, Mitchell AE (2014) HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem 151:31–39CrossRefGoogle Scholar
  3. 3.
    Agila A, Barringer S (2012) Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis). J Food Sci 77:C461–C468CrossRefGoogle Scholar
  4. 4.
    Mendigholi K, Sheidai M, Niknam V, Attar F, Zahra N (2013) Population structure and genetic diversity of Prunus scoparia in Iran. Ann Bot Fenn 50:327–336CrossRefGoogle Scholar
  5. 5.
    Sathe SK, Teuber SS, Gradziel TM, Roux KH (2001) Electrophoretic and immunological analyses of almond (Prunus dulcis L.) genotypes and hybrids. J Agr Food Chem 49:2043–2052CrossRefGoogle Scholar
  6. 6.
    Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel T, Martínez-Gómez P (2009) Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genet Resour Crop Ev 56:947–961CrossRefGoogle Scholar
  7. 7.
    Rouhi V, Samson R, Lemeur R, Van Damme P (2007) Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environ Exper Bot 59:117–129CrossRefGoogle Scholar
  8. 8.
    Hashemnia M, Nikousefat Z, Yazdani-Rostam M (2015) Antidiabetic effect of Pistacia atlantica and Amygdalus scoparia in streptozotocin-induced diabetic mice. Comp Clin Path 24:1301–1306CrossRefGoogle Scholar
  9. 9.
    Farhoosh R, Tavakoli J (2008) Physicochemical properties of kernel oil from Amygdalus scoparia growing wild in Iran. J Food Lipids 15:433–443CrossRefGoogle Scholar
  10. 10.
    Moayedi A, Rezaei K, Moini S, Keshavarz B (2011) Chemical compositions of oils from several wild almond species. J Am Oil Chem Soc 88:503–508CrossRefGoogle Scholar
  11. 11.
    Hojjati M, Calín-Sánchez Á, Razavi SH, Carbonell-Barrachina ÁA (2013) Effect of roasting on colour and volatile composition of pistachios (Pistacia vera L.). Int J Food Sci Tech 48:437–443CrossRefGoogle Scholar
  12. 12.
    Saklar S, Katnas S, Ungan S (2001) Determination of optimum hazelnut roasting conditions. Int J Food Sci Tech 36:271–281CrossRefGoogle Scholar
  13. 13.
    Kita A, Figiel A (2007) Effect of roasting on properties of walnuts. Pol J Food Nutr Sci 57:89–94Google Scholar
  14. 14.
    Vázquez-Araújo L, Enguix L, Verdú A, García-García E, Carbonell-Barrachina A (2008) Investigation of aromatic compounds in toasted almonds used for the manufacture of turrón. Eur Food Res Technol 227:243–254CrossRefGoogle Scholar
  15. 15.
    Vázquez-Araújo L, Verdu A, Navarro P, Martínez-Sánchez F, Carbonell-Barrachina ÁA (2009) Changes in volatile compounds and sensory quality during toasting of Spanish almonds. Int J Food Sci Tech 44:2225–2233CrossRefGoogle Scholar
  16. 16.
    Vickers Z, Peck A, Labuza T, Huang G (2014) Impact of almond form and moisture content on texture attributes and acceptability. J Food Sci 79:S1399–S1406CrossRefGoogle Scholar
  17. 17.
    García-Pascual P, Mateos M, Carbonell V, Salazar D (2003) Influence of storage conditions on the quality of shelled and roasted almonds. Biosyst Eng 84:201–209CrossRefGoogle Scholar
  18. 18.
    Gou P, Diaz I, Guerrero L, Valero A, Arnau J, Romero A (2000) Physico-chemical and sensory property changes in almonds of Desmayo Largueta variety during toasting/Cambios en las propiedades físico-químicas y sensoriales de almendras de la variedad Desmayo Largueta durante el tostado. Food Sci Technol Int 6:1–7CrossRefGoogle Scholar
  19. 19.
    Özdemir M, Devres O (2000) Kinetics of color changes of hazelnuts during roasting. J Food Eng 44:31–38CrossRefGoogle Scholar
  20. 20.
    Hojjati M, Noguera-Artiaga L, Wojdyło A, Carbonell-Barrachina ÁA (2015) Effects of microwave roasting on physicochemical properties of pistachios (Pistacia vera L.). Food Sci Biotechnol 24:1995–2001CrossRefGoogle Scholar
  21. 21.
    Megahed MG (2001) Microwave roasting of peanuts: effects on oil characteristics and composition. Nahrung 45:255–257CrossRefGoogle Scholar
  22. 22.
    Smith AL, Barringer SA (2014) Color and volatile analysis of peanuts roasted using oven and microwave technologies. J Food Sci 79:C1895–C1906CrossRefGoogle Scholar
  23. 23.
    Smith AL, Perry JJ, Marshall JA, Yousef AE, Barringer SA (2014) Oven, microwave, and combination roasting of peanuts: comparison of inactivation of Salmonella surrogate Enterococcus faecium, color, volatiles, flavor, and lipid oxidation. J Food Sci 79:S1584–S1594CrossRefGoogle Scholar
  24. 24.
    Ciarmiello LF, Piccirillo P, Gerardi C, Piro F, De Luca A, D`Imperio F, Rosito V, Poltronieri P, Santino A (2013) Microwave irradiation for dry-roasting of hazelnuts and evaluation of microwave treatment on hazelnuts peeling and fatty acid oxidation. J Food Res 2:22–35CrossRefGoogle Scholar
  25. 25.
    Yang J, Pan Z, Takeoka G, Mackey B, Bingol G, Brandl MT, Garcin K, McHugh TH, Wang H (2013) Shelf-life of infrared dry-roasted almonds. Food Chem 138:671–678CrossRefGoogle Scholar
  26. 26.
    Givianrad M, Saber-Tehrani M, Jafari Mohammadi S (2013) Chemical composition of oils from wild almond (Prunus scoparia) and wild pistachio (Pistacia atlantica). Grasas Aceites 64:77–84CrossRefGoogle Scholar
  27. 27.
    Balvardi M, Rezaei K, Mendiola JA, Ibáñez E (2015) Optimization of the aqueous enzymatic extraction of oil from Iranian wild almond. J Am Oil Chem Soc 92:985–992CrossRefGoogle Scholar
  28. 28.
    Alonso A, Vázquez-Araújo L, García-Martínez S, Ruiz J, Carbonell-Barrachina ÁA (2009) Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur Food Res Technol 230:315–323CrossRefGoogle Scholar
  29. 29.
    Metcalfe L, Schmitz AA, Pelka J (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515CrossRefGoogle Scholar
  30. 30.
    AENOR (1997) Sensory analysis. UNE standards. AENOR, Madrid (In Spanish) Google Scholar
  31. 31.
    Vázquez-Araújo L, Chambers D, Carbonell-Barrachina ÁA (2012) Development of a sensory lexicon and application by an industry trade panel for turrón, a European protected product. J Sens Stud 27:26–36CrossRefGoogle Scholar
  32. 32.
    Meilgaard MC, Carr BT, Civille GV (2007) Sensory evaluation techniques, 4th edn. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Thostenson E, Chou T-W (1999) Microwave processing: fundamentals and applications. Compo Part A Appl S 30:1055–1071CrossRefGoogle Scholar
  34. 34.
    Severini C, Gomes T, De Pilli T, Romani S, Massini R (2000) Autoxidation of packed almonds as affected by Maillard reaction volatile compounds derived from roasting. J Agr Food Chem 48:4635–4640CrossRefGoogle Scholar
  35. 35.
    Pearson T (1999) Spectral properties and effect of drying temperature on almonds with concealed damage. LWT Food Sci Technol 32:67–72CrossRefGoogle Scholar
  36. 36.
    Shakerardekani A, Karim R, Mohd Ghazali H, Chin N (2011) Effect of roasting conditions on hardness, moisture content and colour of pistachio kernels. Int Food Res J 18:704–710Google Scholar
  37. 37.
    Kashani G, Valadon L (1983) Effect of salting and roasting on the lipids of Iranian pistachio kernels. Int J Food Sci Tech 18:461–467CrossRefGoogle Scholar
  38. 38.
    Kirbaşlar FG, Erkmen G (2003) Investigation of the effect of roasting temperature on the nutritive value of hazelnuts. Plant Food Hum Nutr 58:1–10CrossRefGoogle Scholar
  39. 39.
    Yoshida H, Hirakawa Y, Tomiyama Y, Mizushina Y (2003) Effects of microwave treatment on the oxidative stability of peanut (Arachis hypogaea) oils and the molecular species of their triacylglycerols. Eur J Lipid Sci Tech 105:351–358CrossRefGoogle Scholar
  40. 40.
    Uquiche E, Jeréz M, Ortíz J (2008) Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov Food Sci Emerg 9:495–500CrossRefGoogle Scholar
  41. 41.
    Mexis S, Badeka A, Chouliara E, Riganakos K, Kontominas M (2009) Effect of γ-irradiation on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis). Innov Food Sci Emerg 10:87–92CrossRefGoogle Scholar
  42. 42.
    The Good Scents Company (2016) The Goods Scents Company Information System. Accessed 7 June 2016
  43. 43.
    SAFC™ (2011) Flavors and Fragrances, European edn. SAFC Specialties, MadridGoogle Scholar
  44. 44.
    Wagner R, Czerny M, Bielohradsky J, Grosch W (1999) Structure-odour activity relationships of alkylpyrazines. Eur Food Res Technol 208:308–316Google Scholar
  45. 45.
    Alasalvar C, Shahidi F, Cadwallader KR (2003) Comparison of natural and roasted Turkish tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. J Agr Food Chem 51:5067–5072CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Mohammad Hojjati
    • 1
    Email author
  • Leontina Lipan
    • 2
  • Ángel A. Carbonell-Barrachina
    • 2
  1. 1.Department of Food Science and TechnologyRamin Agriculture and Natural Resources University of KhuzestanAhvazIran
  2. 2.Departamento Tecnología Agroalimentaria, Escuela Politécnica Superior de OrihuelaUniversidad Miguel Hernández de ElcheOrihuelaSpain

Personalised recommendations