Chemical Characterization of Six Microalgae with Potential Utility for Food Application

  • Ângelo Paggi Matos
  • Rafael Feller
  • Elisa Helena Siegel Moecke
  • José Vladimir de Oliveira
  • Agenor Furigo Junior
  • Roberto Bianchini Derner
  • Ernani Sebastião Sant’Anna
Original Paper

Abstract

Microalgae contain high levels of proteins, carbohydrates, and lipids, and have found a useful application in enhancing the nutritional value of foods. These organisms can also synthesize long-chain fatty acids in the form of triacylglycerols, such as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linolenic acid (LA), γ-linolenic acid (GLA) and arachidonic acid (AA). The aim of this study was to determine the chemical composition and measure protein, carbohydrates, fibers, lipids as well as the fatty acids composition of six microalgae species with potential application in the food industry. Two freshwater species, Chlorella vulgaris and Spirulina platensis, and four marine species, Nannochloropsis oculata, Nannochloropsis gaditana, Porphyridium cruentum, and Phaeodactylum tricornutum, were used in the experiments. Intracellular protein was the most prominent algal component (42.8–35.4 %), followed by carbohydrate + fiber (32.3–28.6 %), and lipids (15.6–5.3 %). N. gaditana is rich in saturated fatty acids, mainly palmitic acid (5.1 g/100 g), while the cells of S. platensis and C. vulgaris algae are abundant in GLA (1.9 g/100 g) and ALA (2.8 g/100 g) acids, respectively. P. cruentum differs from other algae, because it contains a large amount of AA (3.7 g/100 g). The marine microorganisms N. oculata and P. tricornutum are also a source of essential long-chain polyunsaturated fatty acids (LC-PUFA-ɷ3), mainly composed of EPA and DHA. Our results suggest that the freshwater species C. vulgaris and S. platensis are attractive nutritional supplements because of their low fiber and high protein/carbohydrate contents, while the marine species P. tricornutum and N. oculata can enrich foods with LC-PUFA-ω3, because of their favorable ω3/ω6 ratio.

Keywords

Microalgae Biomass composition Lipids Fatty acids Omega-3 Nutraceuticals 

Notes

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for financial support and doctoral scholarship to AP Matos and R Feller.

References

  1. 1.
    Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173CrossRefGoogle Scholar
  2. 2.
    Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muyleart K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400CrossRefGoogle Scholar
  3. 3.
    Draaisma RB, Wijffels RH, Slegers (Ellen) PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotech 24:169–177CrossRefGoogle Scholar
  4. 4.
    Henrikson R (2009) Earth Food Spirulina. Hawaii, USA, Ronore EnterprisesGoogle Scholar
  5. 5.
    Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  6. 6.
    Fernandes CE, Vasconcelos MAS, Ribeiro MA, Sarubbo LA, Andrade SAC, Melo Filho AB (2014) Nutritional and lipid profiles in marine fish species from Brazil. Food Chem 160:67–71CrossRefGoogle Scholar
  7. 7.
    Armenta RE, Valentine MC (2013) Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc 90:167–182CrossRefGoogle Scholar
  8. 8.
    FAO/WHO (2008). Fats and fatty acids in human nutrition—report of an expert consultation. Food and Agriculture Organization of the United Nations—FAOGoogle Scholar
  9. 9.
    Martin CA, Almeida VV, Ruiz MR, Visentainer JEL, Matshushita M, Souza NE, Visentainer JV (2006) Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Rev Nutr 19:761–770CrossRefGoogle Scholar
  10. 10.
    Kleiner AC, Cladis DP, Santerre CR (2014) A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the United States. J Sci Food Agric 95:1260–1267CrossRefGoogle Scholar
  11. 11.
    Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I (2013) Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem 141:4051–4059CrossRefGoogle Scholar
  12. 12.
    Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota AH, Stefanova R, McGinn PJ (2015) Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res 11:435–447CrossRefGoogle Scholar
  13. 13.
    Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119CrossRefGoogle Scholar
  14. 14.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  15. 15.
    Nichols HW (1973) Growth media–freshwater. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24Google Scholar
  16. 16.
    Ferraz CAM, Aquarone E, Krauter M (1985) Efeito da luz e do pH no crescimento de Spirulina maxima. Rev Microbiol 16:132–137Google Scholar
  17. 17.
    Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Charley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 29–60CrossRefGoogle Scholar
  18. 18.
    Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar
  19. 19.
    AOAC, 2005. AOAC Official Methods. In: Official Methods of Analysis of AOAC International, 18th ed. AOAC International, GaithersburgGoogle Scholar
  20. 20.
    IAL (2005) Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos, 3rd edn. IMESP, São PauloGoogle Scholar
  21. 21.
    Megazyme dietary fiber analysis, based on AACC (Method 32-05-01) and AOAC (Official Method 985.29). Megazyme International Ireland Ltd, Wicklow, IrelandGoogle Scholar
  22. 22.
    Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32CrossRefGoogle Scholar
  23. 23.
    ANVISA (2003). Agência Nacional de Vigilância Sanitária. Aprova Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados, tornando obrigatória a rotulagem nutricional. Resolução no 360, Brazil December 2003Google Scholar
  24. 24.
    AMERICAN OIL CHEMISTS’ SOCIETY. Official methods and recommended practices for the American Oil Chemists’ Society. 4 ed. Champaign, USA, AOCS, 1995. (AOCS Official Method Ce 1-62: Fatty acid composition by gas chromatography)Google Scholar
  25. 25.
    Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet (London) 338:985–992CrossRefGoogle Scholar
  26. 26.
    Santos-Silva J, Bessa RJB, Santos-Silva F (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest Prod Sci 77:187–194CrossRefGoogle Scholar
  27. 27.
    Statsoft Inc., 2004. Statistica 7.0, Tulsa, OK, USAGoogle Scholar
  28. 28.
    Matos AP, Ferreira WB, Torres RCO, Morioka LRI, Canella MHM, Rotta J, Silva T, Moecke EHS, Sant’Anna ES (2014) Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. J Appl Phycol 27:1473–1483CrossRefGoogle Scholar
  29. 29.
    Anupama Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479CrossRefGoogle Scholar
  30. 30.
    Lourenço SO, Barbarino E, De-Paula JC, Pereira LOS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res 50:233–241CrossRefGoogle Scholar
  31. 31.
    Vonshak A (2002) Spirulina platensis (Arthrospira): Physiology. Cell-biology and Biotechnology, Taylor & Francis e-Library 252p Google Scholar
  32. 32.
    Rebolloso Fuentes MM, Ácien Fernández GG, Sánchez Pérez JA, Guil Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353CrossRefGoogle Scholar
  33. 33.
    Cohen Z (1990) The production potential of Eicosapentaenoic and Arachidonic Acids by the Red Alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920CrossRefGoogle Scholar
  34. 34.
    Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38:965–977CrossRefGoogle Scholar
  35. 35.
    Baeyens J, Kang Q, Appels L, Dewil R, Lv L, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust 47:60–88CrossRefGoogle Scholar
  36. 36.
    Lee OK, Oh YK, Lee EY (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour Technol 196:22–27CrossRefGoogle Scholar
  37. 37.
    Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062CrossRefGoogle Scholar
  38. 38.
    Neto AMP, Souza RAS, Leon-Nino AD, Costa JDA, Tiburcio RS, Nunes TA, Mello TCS, Kanemoto FT, Saldanha-Corrêa FMP, Gianesella A (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energ 55:525–531CrossRefGoogle Scholar
  39. 39.
    Wong DM, Franz AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Meth 95:122–128CrossRefGoogle Scholar
  40. 40.
    Selvakumar P, Umadevi K (2014) Mass cultivation of marine microalga Nannochloropsis gaditana KF 410818 isolated from Visakhapatnan offshore and fatty acid profile analysis for biodiesel production. J Algal Biomass Utln 5:28–37Google Scholar
  41. 41.
    Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeing HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosc Bioeng 108:429–434CrossRefGoogle Scholar
  42. 42.
    Zhu Y, Dunford NT (2013) Growth and biomass characteristics of Picochlorum oklahomensis and Nannochloropsis oculata. J Am Oil Chem Soc 90:841–849CrossRefGoogle Scholar
  43. 43.
    Matos AP, Feller R, Moecke EHS, Sant’Anna ES (2015) Biomass, lipid productivity and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresour Technol 197:48–55CrossRefGoogle Scholar
  44. 44.
    Mitra M, Patidar SK, George S, Shah F, Mishara S (2015) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res 8:161–167CrossRefGoogle Scholar
  45. 45.
    Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of and Analytical Procedure for Extraction of Lipids from Microalgae. J Am Oil Chem Soc 89:189–198CrossRefGoogle Scholar
  46. 46.
    Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776CrossRefGoogle Scholar
  47. 47.
    Raposo MFJ, Morais AMMB, Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63CrossRefGoogle Scholar
  48. 48.
    International Society for the Study of Fatty Acids and Lipids (accessed Oct. 2015) Recommendations for intake of polyunsaturated fatty acids in healthy adults. ISSFAL, 2004, UK (http://www.issfal.org.uk)
  49. 49.
    Turan H, Sonmez G, Kaya Y (2007) Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black sea. J Fish Sci 1:97–103Google Scholar
  50. 50.
    Simat V, Bogdanovic T, Poljak V, Petricevic S (2015) Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities. J Food Compos Anal 40:120–125CrossRefGoogle Scholar
  51. 51.
    Testi S, Bonaldo A, Gatta PP, Badini A (2006) Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem 98:104–111CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Ângelo Paggi Matos
    • 1
  • Rafael Feller
    • 2
  • Elisa Helena Siegel Moecke
    • 1
    • 3
  • José Vladimir de Oliveira
    • 2
  • Agenor Furigo Junior
    • 2
  • Roberto Bianchini Derner
    • 4
  • Ernani Sebastião Sant’Anna
    • 1
  1. 1.Laboratory of Food Biotechnology, Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Chemical and Food EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Laboratory of Environmental EngineeringSouthern University of Santa CatarinaPalhoçaBrazil
  4. 4.Laboratory of Algae Cultivation, Department of AquacultureFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations