Skip to main content
Log in

Chemical Characterization of Six Microalgae with Potential Utility for Food Application

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Microalgae contain high levels of proteins, carbohydrates, and lipids, and have found a useful application in enhancing the nutritional value of foods. These organisms can also synthesize long-chain fatty acids in the form of triacylglycerols, such as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linolenic acid (LA), γ-linolenic acid (GLA) and arachidonic acid (AA). The aim of this study was to determine the chemical composition and measure protein, carbohydrates, fibers, lipids as well as the fatty acids composition of six microalgae species with potential application in the food industry. Two freshwater species, Chlorella vulgaris and Spirulina platensis, and four marine species, Nannochloropsis oculata, Nannochloropsis gaditana, Porphyridium cruentum, and Phaeodactylum tricornutum, were used in the experiments. Intracellular protein was the most prominent algal component (42.8–35.4 %), followed by carbohydrate + fiber (32.3–28.6 %), and lipids (15.6–5.3 %). N. gaditana is rich in saturated fatty acids, mainly palmitic acid (5.1 g/100 g), while the cells of S. platensis and C. vulgaris algae are abundant in GLA (1.9 g/100 g) and ALA (2.8 g/100 g) acids, respectively. P. cruentum differs from other algae, because it contains a large amount of AA (3.7 g/100 g). The marine microorganisms N. oculata and P. tricornutum are also a source of essential long-chain polyunsaturated fatty acids (LC-PUFA-ɷ3), mainly composed of EPA and DHA. Our results suggest that the freshwater species C. vulgaris and S. platensis are attractive nutritional supplements because of their low fiber and high protein/carbohydrate contents, while the marine species P. tricornutum and N. oculata can enrich foods with LC-PUFA-ω3, because of their favorable ω3/ω6 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173

    Article  Google Scholar 

  2. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muyleart K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  Google Scholar 

  3. Draaisma RB, Wijffels RH, Slegers (Ellen) PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotech 24:169–177

    Article  CAS  Google Scholar 

  4. Henrikson R (2009) Earth Food Spirulina. Hawaii, USA, Ronore Enterprises

    Google Scholar 

  5. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  6. Fernandes CE, Vasconcelos MAS, Ribeiro MA, Sarubbo LA, Andrade SAC, Melo Filho AB (2014) Nutritional and lipid profiles in marine fish species from Brazil. Food Chem 160:67–71

    Article  CAS  Google Scholar 

  7. Armenta RE, Valentine MC (2013) Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc 90:167–182

    Article  CAS  Google Scholar 

  8. FAO/WHO (2008). Fats and fatty acids in human nutrition—report of an expert consultation. Food and Agriculture Organization of the United Nations—FAO

  9. Martin CA, Almeida VV, Ruiz MR, Visentainer JEL, Matshushita M, Souza NE, Visentainer JV (2006) Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Rev Nutr 19:761–770

    Article  CAS  Google Scholar 

  10. Kleiner AC, Cladis DP, Santerre CR (2014) A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the United States. J Sci Food Agric 95:1260–1267

    Article  Google Scholar 

  11. Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I (2013) Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem 141:4051–4059

    Article  CAS  Google Scholar 

  12. Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota AH, Stefanova R, McGinn PJ (2015) Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res 11:435–447

    Article  Google Scholar 

  13. Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119

    Article  CAS  Google Scholar 

  14. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  15. Nichols HW (1973) Growth media–freshwater. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  16. Ferraz CAM, Aquarone E, Krauter M (1985) Efeito da luz e do pH no crescimento de Spirulina maxima. Rev Microbiol 16:132–137

    Google Scholar 

  17. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Charley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 29–60

    Chapter  Google Scholar 

  18. Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

  19. AOAC, 2005. AOAC Official Methods. In: Official Methods of Analysis of AOAC International, 18th ed. AOAC International, Gaithersburg

  20. IAL (2005) Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos, 3rd edn. IMESP, São Paulo

    Google Scholar 

  21. Megazyme dietary fiber analysis, based on AACC (Method 32-05-01) and AOAC (Official Method 985.29). Megazyme International Ireland Ltd, Wicklow, Ireland

  22. Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  Google Scholar 

  23. ANVISA (2003). Agência Nacional de Vigilância Sanitária. Aprova Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados, tornando obrigatória a rotulagem nutricional. Resolução no 360, Brazil December 2003

  24. AMERICAN OIL CHEMISTS’ SOCIETY. Official methods and recommended practices for the American Oil Chemists’ Society. 4 ed. Champaign, USA, AOCS, 1995. (AOCS Official Method Ce 1-62: Fatty acid composition by gas chromatography)

  25. Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet (London) 338:985–992

    Article  CAS  Google Scholar 

  26. Santos-Silva J, Bessa RJB, Santos-Silva F (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest Prod Sci 77:187–194

    Article  Google Scholar 

  27. Statsoft Inc., 2004. Statistica 7.0, Tulsa, OK, USA

  28. Matos AP, Ferreira WB, Torres RCO, Morioka LRI, Canella MHM, Rotta J, Silva T, Moecke EHS, Sant’Anna ES (2014) Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. J Appl Phycol 27:1473–1483

    Article  Google Scholar 

  29. Anupama Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    Article  CAS  Google Scholar 

  30. Lourenço SO, Barbarino E, De-Paula JC, Pereira LOS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res 50:233–241

    Article  Google Scholar 

  31. Vonshak A (2002) Spirulina platensis (Arthrospira): Physiology. Cell-biology and Biotechnology, Taylor & Francis e-Library 252p

    Google Scholar 

  32. Rebolloso Fuentes MM, Ácien Fernández GG, Sánchez Pérez JA, Guil Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353

    Article  CAS  Google Scholar 

  33. Cohen Z (1990) The production potential of Eicosapentaenoic and Arachidonic Acids by the Red Alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

    Article  CAS  Google Scholar 

  34. Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38:965–977

    Article  CAS  Google Scholar 

  35. Baeyens J, Kang Q, Appels L, Dewil R, Lv L, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust 47:60–88

    Article  Google Scholar 

  36. Lee OK, Oh YK, Lee EY (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour Technol 196:22–27

    Article  CAS  Google Scholar 

  37. Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062

    Article  CAS  Google Scholar 

  38. Neto AMP, Souza RAS, Leon-Nino AD, Costa JDA, Tiburcio RS, Nunes TA, Mello TCS, Kanemoto FT, Saldanha-Corrêa FMP, Gianesella A (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energ 55:525–531

    Article  Google Scholar 

  39. Wong DM, Franz AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Meth 95:122–128

    Article  CAS  Google Scholar 

  40. Selvakumar P, Umadevi K (2014) Mass cultivation of marine microalga Nannochloropsis gaditana KF 410818 isolated from Visakhapatnan offshore and fatty acid profile analysis for biodiesel production. J Algal Biomass Utln 5:28–37

    Google Scholar 

  41. Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeing HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosc Bioeng 108:429–434

    Article  CAS  Google Scholar 

  42. Zhu Y, Dunford NT (2013) Growth and biomass characteristics of Picochlorum oklahomensis and Nannochloropsis oculata. J Am Oil Chem Soc 90:841–849

    Article  CAS  Google Scholar 

  43. Matos AP, Feller R, Moecke EHS, Sant’Anna ES (2015) Biomass, lipid productivity and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresour Technol 197:48–55

    Article  CAS  Google Scholar 

  44. Mitra M, Patidar SK, George S, Shah F, Mishara S (2015) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res 8:161–167

    Article  Google Scholar 

  45. Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of and Analytical Procedure for Extraction of Lipids from Microalgae. J Am Oil Chem Soc 89:189–198

    Article  CAS  Google Scholar 

  46. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  47. Raposo MFJ, Morais AMMB, Morais RMSC (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63

    Article  CAS  Google Scholar 

  48. International Society for the Study of Fatty Acids and Lipids (accessed Oct. 2015) Recommendations for intake of polyunsaturated fatty acids in healthy adults. ISSFAL, 2004, UK (http://www.issfal.org.uk)

  49. Turan H, Sonmez G, Kaya Y (2007) Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black sea. J Fish Sci 1:97–103

    CAS  Google Scholar 

  50. Simat V, Bogdanovic T, Poljak V, Petricevic S (2015) Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities. J Food Compos Anal 40:120–125

    Article  CAS  Google Scholar 

  51. Testi S, Bonaldo A, Gatta PP, Badini A (2006) Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem 98:104–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for financial support and doctoral scholarship to AP Matos and R Feller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângelo Paggi Matos.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, Â.P., Feller, R., Moecke, E.H.S. et al. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. J Am Oil Chem Soc 93, 963–972 (2016). https://doi.org/10.1007/s11746-016-2849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2849-y

Keywords

Navigation