Skip to main content
Log in

Effect of Tween 20 on the Properties of Stearate Oleogels: an in-Depth Analysis

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

This work deals with the investigation of the polymorphic changes associated with stearic acid in the presence of Tween 20 during the formation of oleogels. Tween 20 was utilized as a crystal habit modifier and its effect on the physical and thermal properties of the oleogels have been studied. Tween 20 was found to stabilize the polymorph B of stearic acid, marked by an increase in the leaf-like structures. Fluorescent recovery after photobleaching studies suggested Tween 20 concentration-dependent reduction in the mobile fractions. Gelation studies suggested a delay in the induction time of nucleation of stearic acid in the presence of Tween 20 was due to the decrease in the degree of supercooling. Avrami analysis supported the stabilization of the polymorph B of stearic acid in the presence of Tween 20. XRD measurements indicated that Tween 20 promoted the growth of the stearic acid crystals while forming leaf-like structures. The molecular rearrangement of the gelator network was quicker and ordered in the Tween 20-containing oleogels. The increase in ordered arrangement of the stearic acid molecules has lowered the crystal imperfections. In other words, it enhanced the crystal gaps (pores) associated with the gelators. When stress (either thermal or mechanical) was introduced, the strength of the oleogels was decreased due to the syneresis of oil through the pores. An increase in the Tween 20 concentration-dependent relaxation of the oleogels was also observed due to the polymorphic change and arrangement of the gelators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dassanayake LSK, Kodali DR, Ueno S (2011) Formation of oleogels based on edible lipid materials. Curr Opin Colloid Interface Sci 16(5):432–439

    Article  CAS  Google Scholar 

  2. Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K (2015) Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J Agric Food Chem 63(19):4862–4869. doi:10.1021/acs.jafc.5b01548

    Article  CAS  Google Scholar 

  3. Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12(4):221–231

    Article  CAS  Google Scholar 

  4. Schaink HM, van Malssen KF, Morgado-Alves S, Kalnin D, van der Linden E (2007) Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res Int 40(9):1185–1193. doi:10.1016/j.foodres.2007.06.013

    Article  CAS  Google Scholar 

  5. Patel AR, Dewettinck K (2015) Current update on the influence of minor lipid components, shear and presence of interfaces on fat crystallization. Curr Opin Food Sci 3:65–70. doi:10.1016/j.cofs.2015.05.010

    Article  Google Scholar 

  6. Acevedo NC, Marangoni AG (2010) Characterization of the nanoscale in triacylglycerol crystal networks. Cryst Growth Des 10(8):3327–3333. doi:10.1021/cg100468e

    Article  CAS  Google Scholar 

  7. Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nut 60(6):986S–990S

    CAS  Google Scholar 

  8. Mensink R (2005) Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 40(12):1201–1205. doi:10.1007/s11745-005-1486-x

    Article  CAS  Google Scholar 

  9. U.S. Department of Agriculture and U.S. Department of Health and Human Services (2011) Dietary Guidelines for Americans, 2010. 7th Edition, Washington DC: U.S. Government Printing Office

  10. Severino P, Pinho SC, Souto EB, Santana MHA (2011) Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B 86(1):125–130. doi:10.1016/j.colsurfb.2011.03.029

    Article  CAS  Google Scholar 

  11. Kaneko F (1999) Polymorphic and polytypic transformations during crystallization of long-chain compounds. In: Molecular interactions and time-space organization in macromolecular systems, Springer, Berlin, Heidelberg, pp 45–53. doi:10.1007/978-3-642-60226-9_5

  12. Sato K, Boistelle R (1983) Occurrence of stearic acid polymorphs from cyclohexane solutions. J Colloid Interface Sci 94(2):593–596

    Article  CAS  Google Scholar 

  13. Mirmehrabi M, Rohani S (2004) Measurement and prediction of the solubility of stearic acid polymorphs by the UNIQUAC equation. Can J Chem Eng 82(2):335–342

    Article  CAS  Google Scholar 

  14. Garti N, Wellner E, Sarig S (1980) Stearic acid polymorphs in correlation with crystallization conditions and solvents. Kristall und Technik 15(11):1303–1310

    Article  CAS  Google Scholar 

  15. Garti N, Wellner E, Sarig S (1981) Effect of food emulsifiers on crystal structure and habit of stearic acid. J Am Oil Chem Soc 58(12):1058–1060. doi:10.1007/bf02679326

    Article  CAS  Google Scholar 

  16. Bachynsky M, Shah N, Patel C, Malick A (1997) Factors affecting the efficiency of a self-emulsifying oral delivery system. Drug Dev Ind Pharm 23(8):809–816

    Article  CAS  Google Scholar 

  17. Sagiri SS, Singh VK, Pal K, Banerjee I, Basak P (2015) Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties. Mater Sci Eng C 48:688–699. doi:10.1016/j.msec.2014.12.018

    Article  CAS  Google Scholar 

  18. Goodwin JS, Kenworthy AK (2005) Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 37(2):154–164. doi:10.1016/j.ymeth.2005.05.013

    Article  CAS  Google Scholar 

  19. Kerr RM, Tombokan X, Ghosh S, Martini S (2011) Crystallization behavior of anhydrous milk fat—sunflower oil wax blends. J Agric Food Chem 59(6):2689–2695

    Article  CAS  Google Scholar 

  20. Himawan C, Starov V, Stapley A (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 122(1):3–33

    Article  CAS  Google Scholar 

  21. Sato K, Ueno S, Yano J (1999) Molecular interactions and kinetic properties of fats. Prog Lipid Res 38(1):91–116

    Article  CAS  Google Scholar 

  22. Siepmann J, Peppas N (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174

    Article  Google Scholar 

  23. Ensikat HJ, Boese M, Mader W, Barthlott W, Koch K (2006) Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chem Phys Lipids 144(1):45–59. doi:10.1016/j.chemphyslip.2006.06.016

    Article  CAS  Google Scholar 

  24. Lutton ES, Jackson FL (1948) The Polymorphism of 1-Monostearin and 1-Monopalmitin. J Am Chem Soc 70(7):2445–2449. doi:10.1021/ja01187a043

    Article  CAS  Google Scholar 

  25. Le Révérend BJD, Smart I, Fryer PJ, Bakalis S (2011) Modelling the rapid cooling and casting of chocolate to predict phase behaviour. Chem Eng Sci 66(6):1077–1086. doi:10.1016/j.ces.2010.12.007

    Article  Google Scholar 

  26. Hopper RW, Uhlmann DR (1974) Solute redistribution during crystallization at constant velocity and constant temperature. J Cryst Growth 21(2):203–213. doi:10.1016/0022-0248(74)90006-2

    Article  CAS  Google Scholar 

  27. Michael AR, Amanda JW, Alejandro GM (2008) Post-crystallization increases in the mechanical strength of self-assembled fibrillar networks is due to an increase in network supramolecular ordering. J Phys D Appl Phys 41(21):215501

    Article  Google Scholar 

  28. Muthukumar M (2004) Nucleation in polymer crystallization. Adv Chem Phys 128:1–64

    Google Scholar 

  29. Ng WL, Oh CH (1994) A kinetic study on isothermal crystallization of palm oil by solid fat content measurements. J Am Oil Chem Soc 71(10):1135–1139. doi:10.1007/bf02675908

    Article  CAS  Google Scholar 

  30. Rogers MA, Wright AJ, Marangoni AG (2009) Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid Interface Sci 14(1):33–42. doi:10.1016/j.cocis.2008.02.004

    Article  CAS  Google Scholar 

  31. Bag BG, Dinda SK, Dey PP, Mallia VA, Weiss RG (2009) Self-assembly of esters of arjunolic acid into fibrous networks and the properties of their organogels. Langmuir 25(15):8663–8671. doi:10.1021/la8042796

    Article  CAS  Google Scholar 

  32. Sagiri S, Singh VK, Pal K, Banerjee I, Basak P (2015) Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties. Mater Sci Eng C 48:688–699

    Article  CAS  Google Scholar 

  33. Sagiri SS, Sharma V, Basak P, Pal K (2014) Mango butter emulsion gels as cocoa butter equivalents: physical, thermal, and mechanical analyses. J Agric Food Chem 62(47):11357–11368. doi:10.1021/jf502658y

    Article  CAS  Google Scholar 

  34. Solı́s-Fuentes JA, Durán-de-Bazúa MC (2004) Mango seed uses: thermal behaviour of mango seed almond fat and its mixtures with cocoa butter. Bioresour Technol 92(1):71–78. doi:10.1016/j.biortech.2003.07.003

    Article  Google Scholar 

  35. Wu M-Y, Chang Y-H, Shiau S-Y, Chen C-C (2012) Rheology of fiber-enriched steamed bread: stress relaxation and texture profile analysis. J Food Drug Anal 20(1):133–142

    Google Scholar 

  36. Park HY, Kloxin CJ, Abuelyaman AS, Oxman JD, Bowman CN (2012) Stress relaxation via addition-fragmentation chain transfer in high T g, high conversion methacrylate-based systems. Macromolecules 45(14):5640–5646

    Article  CAS  Google Scholar 

  37. Xu X, Liu B, Li Y (2015) Experimental studies on viscoelasticity of film materials in laminated glass sheets. SAE Int J Mater Manuf 8(3):922–931. doi:10.4271/2015-01-0709

    Article  Google Scholar 

  38. Maria HJ, Lyczko N, Nzihou A, Joseph K, Mathew C, Thomas S (2014) Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites. Appl Clay Sci 87:120–128

    Article  CAS  Google Scholar 

  39. Bellido G, Hatcher D (2009) Asian noodles: revisiting Peleg’s analysis for presenting stress relaxation data in soft solid foods. J Food Eng 92(1):29–36

    Article  CAS  Google Scholar 

  40. Smith KW, Bhaggan K, Talbot G, van Malssen KF (2011) Crystallization of fats: influence of minor components and additives. J Am Oil Chem Soc 88(8):1085–1101

    Article  CAS  Google Scholar 

  41. Wright AJ, Hartel RW, Narine SS, Marangoni AG (2000) The effect of minor components on milk fat crystallization. J Am Oil Chem Soc 77(5):463–475

    Article  CAS  Google Scholar 

  42. Metin S, Hartel RW (1998) Thermal analysis of isothermal crystallization kinetics in blends of cocoa butter with milk fat or milk fat fractions. J Am Oil Chem Soc 75(11):1617–1624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the logistic support provided by the National Institute of Technology, Rourkela for the completion of this study. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project No. RG 1435-015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arfat Anis or Kunal Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2118 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvanesh, K., Sagiri, S.S., Banerjee, I. et al. Effect of Tween 20 on the Properties of Stearate Oleogels: an in-Depth Analysis. J Am Oil Chem Soc 93, 711–719 (2016). https://doi.org/10.1007/s11746-016-2810-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2810-0

Keywords

Navigation