Journal of the American Oil Chemists' Society

, Volume 93, Issue 3, pp 373–381 | Cite as

Protected Designation of Origin Extra Virgin Olive Oils Assessment by Nuclear Magnetic Resonance and Multivariate Statistical Analysis: “Terra di Bari”, an Apulian (Southeast Italy) Case Study

  • Laura Del Coco
  • Donato Mondelli
  • Giuseppe Natale Mezzapesa
  • Teodoro Miano
  • Sandra Angelica De Pascali
  • Chiara Roberta Girelli
  • Francesco Paolo Fanizzi
Original Paper


We report a study on the chemical characterization of 102 monovarietal micro-extracted and genetically characterized extra virgin olive oils (EVOOs) from Coratina, Ogliarola Barese and Cima di Mola cultivar, according to “Terra di Bari” (Apulia, southeast Italy) PDO requirement. Three additional geographical mentions, all belonging to the same Bari district (Bitonto, Castel del Monte and Murgia dei Trulli e delle Grotte), were studied and potential microclimate differences were evaluated. Our results indicate the possibility of distinguishing EVOOs from the same “Terra di Bari” PDO with respect to different cultivars and (to some extent) different subareas. In particular, two cultivars (Ogliarola Barese and Coratina), obtained from the same Bitonto area, and a single cultivar (Coratina), obtained from Bitonto and Castel del Monte subareas, were compared to investigate the micro-area pedoclimatic effect. Finally, 1H NMR data were found significant for classification purposes of unknown EVOO samples, the results of which were included in the model space, as they were correctly predicted by the OPLS-DA obtained by 1H NMR data. This work aims to classify commercial “Terra di Bari” PDO EVOOs by comparison of the declared cultivar and geographical origin with a reference dataset of genetically characterized micro-extracted monovarietal oils. In conclusion, the effect of the pedoclimatic micro-areas of origin on the Coratina cultivar, which is the main component of the “Terra di Bari” PDO, has been studied in order to improve the traceability of the raw material used to produce this valuable food.


EVOOs PDO NMR spectroscopy MVA analysis PCA OPLS-DA 





Castel del Monte


Extra virgin olive oils


Murgia dei Trulli e delle Grotte


Multivariate analysis


Principal component analysis


Protected designation of origin


Partial least-squares discriminant analysis


Orthogonal partial least-squares discriminant analysis



The authors would like to express their gratitude to Regione Puglia (Italy) for funding the project PIF (misura 124 PSR 2007-2013) – “Olio Terra di Bari: miglioramento della qualità delle acque di vegetazione e caratterizzazione geografica e varietale dell’olio di oliva DOP “Terra di Bari”

Supplementary material

11746_2015_2778_MOESM1_ESM.doc (4.8 mb)
Supplementary material 1 (DOC 4872 kb)


  1. 1.
    Mannina L, Sobolev AP (2011) High resolution NMR characterization of olive oils in terms of quality, authenticity and geographical origin. Magn Reson Chem 49:S3–S11CrossRefGoogle Scholar
  2. 2.
    Papadia P, Del Coco L, Muzzalupo I, Rizzi M, Perri E, Cesari G, Simeone V, Mondelli D, Schena FP, Fanizzi FP (2011) Multivariate analysis of 1H-NMR spectra of genetically characterized extra virgin olive oils and growth soil correlations. J Am Oil Chem Soc 88:1463–1475CrossRefGoogle Scholar
  3. 3.
    Del Coco L, De Pascali SA, Fanizzi FP (2015) 1H NMR metabolic profiling of apulian EVOOs: fine pedoclimatic influences in salento cultivars. In: Capozzi F, Laghi L and Belton PS (eds) Magnetic resonance in food science: defining food by magnetic resonance. The Royal Society of Chemistry, Cambridge, UK, pp 154–160. doi: 10.1039/9781782622741-00154
  4. 4.
    Del Coco L, Perri E, Cesari G, Muzzalupo I, Zelasco S, Simeone V, Schena FP, Fanizzi FP (2013) NMR-based metabolomic approach for EVOO from secular olive trees of Apulia region. Eur J Lipid Sci Technol 115:1043–1052CrossRefGoogle Scholar
  5. 5.
    Beckwith-Hall BM, Nicholson JK, Nicholls AW, Foxall PJ, Lindon JC, Connor SC, Abdi M, Connelly J, Holmes E (1998) Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol 11:260–272CrossRefGoogle Scholar
  6. 6.
    Del Coco L, De Pascali SA, Fanizzi FP (2014) NMR-metabolomic study on monocultivar and blend Salento EVOOs including some from secular olive trees. Food Nutr Sci 5:7CrossRefGoogle Scholar
  7. 7.
    Del Coco L, Pascali D, Angelica S, Iacovelli V, Cesari G, Schena FP, Fanizzi FP (2014) Following the olive oil production chain: 1D and 2D NMR study of olive paste, pomace, and oil. Eur J Lipid Sci Technol 116:1513–1521CrossRefGoogle Scholar
  8. 8.
    Del Coco L, Pascali D, Angelica S, Fanizzi FP (2014) 1H NMR spectroscopy and multivariate analysis of monovarietal EVOOs as a tool for modulating Coratina-based blends. Foods 3:238–249CrossRefGoogle Scholar
  9. 9.
    Del Coco L, Schena FP, Fanizzi FP (2012) 1H nuclear magnetic resonance study of olive oils commercially available as Italian products in the United States of America. Nutrients 4:343–355CrossRefGoogle Scholar
  10. 10.
    Alonso-Salces RM, Guillou C, Héberger K, Holland MV (2012) Quality assessment of olive oil by 1H-NMR fingerprinting. INTECH Open Access, Rijeka, CroatiaGoogle Scholar
  11. 11.
    Schievano E, Arosio I, Lava R, Simionato V, Mammi S, Consonni R (2006) Olio di oliva DOP del lago di Garda: uno studio NMR e analisi statistica multivariata. Riv Ital Sostanze Grasse 83:14–17Google Scholar
  12. 12.
    Tomlins AM, Foxall PJ, Lynch MJ, Parkinson J, Everett JR, Nicholson JK (1998) High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples. Biochim Biophys Acta 1379:367–380CrossRefGoogle Scholar
  13. 13.
    Neild GH, Foxall PJ, Lindon JC, Holmes EC, Nicholson JK (1997) Uroscopy in the 21st century: high-field NMR spectroscopy. Nephrol Dial Transplant 12:404–417CrossRefGoogle Scholar
  14. 14.
    Shockcor JP, Unger SE, Wilson ID, Foxall PJ, Nicholson JK, Lindon JC (1996) Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal Chem 68:4431–4435CrossRefGoogle Scholar
  15. 15.
    Foxall PJ, Lenz EM, Lindon JC, Neild GH, Wilson ID, Nicholson JK (1996) Nuclear magnetic resonance and high-performance liquid chromatography-nuclear magnetic resonance studies on the toxicity and metabolism of ifosfamide. Ther Drug Monit 18:498–505CrossRefGoogle Scholar
  16. 16.
    Pasqualone A, Di Rienzo V, Blanco A, Summo C, Caponio F, Montemurro C (2012) Characterization of virgin olive oil from Leucocarpa cultivar by chemical and DNA analysis. Food Res Int 47:188–193CrossRefGoogle Scholar
  17. 17.
    Montemurro C, Miazzi MM, Pasqualone A, Fanelli V, Sabetta W, di Rienzo V (2015) Traceability of PDO olive oil “Terra di Bari” using high resolution melting. J Chem 205:1–7CrossRefGoogle Scholar
  18. 18.
    Barison A, Pereira da Silva CW, Campos FR, Simonelli F, Lenz CA, Ferreira AG (2010) A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem 48:642–650Google Scholar
  19. 19.
    Sundekilde UK, Larsen LB, Bertram HC (2013) NMR-based milk metabolomics. Metabolites 3:204–222CrossRefGoogle Scholar
  20. 20.
    Gallo V, Mastrorilli P, Cafagna I, Nitti GI, Latronico M, Longobardi F, Minoja AP, Napoli C, Romito VA, Schäfer H (2014) Effects of agronomical practices on chemical composition of table grapes evaluated by NMR spectroscopy. J Food Compos Anal 35:44–52CrossRefGoogle Scholar
  21. 21.
    Lindon JC, Nicholson JK, Holmes E (2011) The handbook of metabonomics and metabolomics. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400CrossRefGoogle Scholar
  23. 23.
    Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128CrossRefGoogle Scholar
  24. 24.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:10CrossRefGoogle Scholar
  25. 25.
    De Pascali SA, Coletta A, Del Coco L, Basile T, Gambacorta G, Fanizzi FP (2014) Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chem 161:112–119CrossRefGoogle Scholar
  26. 26.
    Consonni R, Cagliani L, Benevelli F, Spraul M, Humpfer E, Stocchero M (2008) NMR and chemometric methods: a powerful combination for characterization of balsamic and traditional balsamic vinegar of Modena. Anal Chim Acta 611:31–40CrossRefGoogle Scholar
  27. 27.
    Wheelock ÅM, Wheelock CE (2013) Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol BioSyst 9:2589–2596CrossRefGoogle Scholar
  28. 28.
    Barbarisi C, Di Stasio M, La Cara F, Nazzaro M, Siano F, Coppola R, Volpe F, De Mattia A, Grazia Volpe M (2014) Shelf-life of extra virgin olive oils from Southern Italy. Curr Nutr Food Sci 10:234–240CrossRefGoogle Scholar
  29. 29.
    Fanizzi FP, Del Coco L, Girelli CR, De Pascali SA (2015) Harvest year effects on Apulian EVOOs evaluated by 1H NMR based metabolomics. In: IV international conference on foodomics, 2015, Cesena (FC). Book of abstracts, pp 31–32. ISBN 978-88-902152-7-8Google Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Laura Del Coco
    • 1
  • Donato Mondelli
    • 2
  • Giuseppe Natale Mezzapesa
    • 3
  • Teodoro Miano
    • 2
  • Sandra Angelica De Pascali
    • 1
  • Chiara Roberta Girelli
    • 1
  • Francesco Paolo Fanizzi
    • 1
  1. 1.Di.S.Te.B.A., Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità del SalentoLecceItaly
  2. 2.Di.S.S.P.A., Dipartimento di Scienze del Suolo, della Pianta e degli AlimentiUniversità degli Studi di Bari Aldo MoroBariItaly
  3. 3.CIHEAM - Istituto Agronomico Mediterraneo di BariValenzanoItaly

Personalised recommendations