Journal of the American Oil Chemists' Society

, Volume 93, Issue 3, pp 421–430 | Cite as

Efficient Encapsulation of a Water-Soluble Molecule into Lipid Vesicles Using W/O/W Multiple Emulsions via Solvent Evaporation

  • Takashi Kuroiwa
  • Kaname Horikoshi
  • Akihiko Suzuki
  • Marcos A. Neves
  • Isao Kobayashi
  • Kunihiko Uemura
  • Mitsutoshi Nakajima
  • Akihiko Kanazawa
  • Sosaku Ichikawa
Original Paper


We developed a novel method for preparing lipid vesicles with high entrapment efficiency and controlled size using water-in-oil-in-water (W/O/W) multiple emulsions as vesicle templates. Preparation consists of three steps. First, a water-in-oil (W/O) emulsion containing to-be-entrapped hydrophilic molecules in the water phase and vesicle-forming lipids in the oil phase was formulated by sonication. Second, this W/O emulsion was introduced into a microchannel emulsification device to prepare a W/O/W multiple emulsion. In this step, sodium caseinate was used as the external emulsifier. Finally, organic solvent in the oil phase was removed by simple evaporation under ambient conditions to afford lipid vesicles. The diameter of the prepared vesicles reflected the water droplet size of the primary W/O emulsions, indicating that vesicle size could be controlled by the primary W/O emulsification process. Furthermore, high entrapment yields for hydrophilic molecules (exceeding 80 % for calcein) were obtained. The resulting vesicles had a multilamellar vesicular structure, as confirmed by transmission electron microscopy.


Phospholipids Processing technology Lipids Emulsions/colloids Lipid chemistry Lipid analysis 



We thank Prof. Peter Walde (ETH-Zürich, Zürich, Switzerland) for stimulating discussions. This work was partially supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) (No. AS232Z02816F) of the Japan Science and Technology Agency, and a Grant-in-Aid for Young Scientists (B) (No. 22760613) from the Japan Society for the Promotion of Science.


  1. 1.
    Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 9:467–508CrossRefGoogle Scholar
  2. 2.
    Oku N, Kendall DA, MacDonald RC (1982) A simple procedure for the determination of the trapped volume of liposomes. Biochim Biophys Acta 691:332–340CrossRefGoogle Scholar
  3. 3.
    Walde P, Ichikawa S (2001) Enzymes in lipid vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177CrossRefGoogle Scholar
  4. 4.
    Duzgunes N (ed) (2003) Liposomes. Methods in enzymology, vol 367. Academic, San DiegoGoogle Scholar
  5. 5.
    Torchilin VP, Weissig V (eds) (2003) Liposomes: a practical approach, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Szoka F Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75:4194–4198CrossRefGoogle Scholar
  7. 7.
    Zhang L, Hu J, Lu Z (1997) Preparation of liposomes with a controlled assembly procedure. J Colloid Interfaces Sci 190:76–80CrossRefGoogle Scholar
  8. 8.
    Pautot S, Frisken BJ, Weitz DA (2003) Production of unilamellar vesicles using an inverted emulsion. Langmuir 19:2870–2879CrossRefGoogle Scholar
  9. 9.
    Tan YC, Hettiarachchi K, Siu M, Pan YR, Lee AP (2006) Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J Am Chem Soc 128:5656–5658CrossRefGoogle Scholar
  10. 10.
    Sugiura S, Kuroiwa T, Kagota T, Nakajima M, Sato S, Mukataka S, Walde P, Ichikawa S (2008) Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir 24:4581–4588CrossRefGoogle Scholar
  11. 11.
    Kuroiwa T, Kiuchi H, Noda K, Kobayashi I, Nakajima M, Uemura K, Sato S, Mukataka S, Ichikawa S (2009) Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluid Nanofluid 6:811–821CrossRefGoogle Scholar
  12. 12.
    Kuroiwa T, Fujita R, Kobayashi I, Uemura K, Nakajima M, Sato S, Walde P, Ichikawa S (2012) Efficient preparation of giant vesicles as biomimetic compartment systems with high entrapment yields for biomacromolecules. Chem Biodivers 9:2453–2472CrossRefGoogle Scholar
  13. 13.
    Nishimura K, Suzuki H, Toyota T, Yomo T (2012) Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. J Colloid Interfaces Sci 376:119–125CrossRefGoogle Scholar
  14. 14.
    Ishii F, Takamura A, Ogata H (1988) Preparation conditions and evaluation of the stability of lipid vesicles (liposomes) using the microencapsulation technique. J Dispers Sci Technol 9:1–15CrossRefGoogle Scholar
  15. 15.
    Zheng S, Zheng Y, Beissinger RL, Fresco R (1994) Microencapsulation of hemoglobin in liposomes using double emulsion, film dehydration/rehydration approach. Biochim Biophys Acta 1196:123–130CrossRefGoogle Scholar
  16. 16.
    Nii T, Ishii F (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm 198:198–205CrossRefGoogle Scholar
  17. 17.
    Wang T, Deng Y, Geng Y, Gao Z, Zou J, Wang Z (2006) Preparation of submicron unilamellar liposomes by freeze-dyring double emulsions. Biochim Biophys Acta 1758:222–231CrossRefGoogle Scholar
  18. 18.
    Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Double emulsion template monodisperse phospholipid vesicles. Langmuir 24:7651–7653CrossRefGoogle Scholar
  19. 19.
    Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc 74:317–321CrossRefGoogle Scholar
  20. 20.
    Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566CrossRefGoogle Scholar
  21. 21.
    Sugiura S, Nakajima M, Yamamoto K, Iwamoto S, Oda T, Satake M, Seki M (2004) Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification. J Colloid Interfaces Sci 270:221–228CrossRefGoogle Scholar
  22. 22.
    Kobayashi I, Lou X, Mukataka S, Nakajima M (2005) Preparation of monodisperse water-in-oil-in-water emulsions using microfluidization and straight-through microchannel emulsification. J Am Oil Chem Soc 82:65–71CrossRefGoogle Scholar
  23. 23.
    Souilem S, Kobayashi I, Neves MA, Sayadi S, Ichikawa S, Nakajima M (2014) Preparation of monodisperse food-grade oleuropein-loaded W/O/W emulsions using microchannel emulsification and evaluation of their storage stability. Food Bioprocess Technol 7:2014–2027Google Scholar
  24. 24.
    Garti N, Aserin A (1996) Double emulsions stabilized by macromolecular surfactants. Adv Colloid Interfaces Sci 65:37–69CrossRefGoogle Scholar
  25. 25.
    Garti N (1997) Progress in stabilization and transport phenomena of double emulsions in food applications. LWT Food Sci Technol 30:222–235CrossRefGoogle Scholar
  26. 26.
    Lichtenberg D, Markello T (1984) Structural characteristics of phospholipid multilamellar liposomes. J Pharm Sci 73:122–125CrossRefGoogle Scholar
  27. 27.
    Florence AT, Whitehill D (1981) Some features of breakdown in water-in-oil-in-water multiple emulsions. J Colloid Interfaces Sci 79:243–256CrossRefGoogle Scholar
  28. 28.
    Kirby C, Gregoriadis G (1984) Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Bio/Technology 2:979–984CrossRefGoogle Scholar
  29. 29.
    Sugiura S, Ichikawa S, Sano Y, Nakajima M, Liu XQ, Seki M, Frusaki S (2001) Formation and characterization of reversed micelles composed of phosphoslids and fatty acid. J Colloid Interfaces Sci 240:566–572CrossRefGoogle Scholar
  30. 30.
    Böckmann RA, Hac A, Heinberg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655CrossRefGoogle Scholar
  31. 31.
    van den Bogaart G, Hermans N, Krasnikov V, de Vries AH, Poolman B (2007) On the decrease in lateral mobility of phospholipids by sugars. Biophys J 92:1598–1605CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Takashi Kuroiwa
    • 1
    • 2
    • 3
  • Kaname Horikoshi
    • 2
  • Akihiko Suzuki
    • 2
  • Marcos A. Neves
    • 1
  • Isao Kobayashi
    • 3
  • Kunihiko Uemura
    • 3
  • Mitsutoshi Nakajima
    • 1
  • Akihiko Kanazawa
    • 2
  • Sosaku Ichikawa
    • 1
  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City UniversityTokyoJapan
  3. 3.National Food Research InstituteNational Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations