Skip to main content
Log in

Mono-Estolide Synthesis from trans-8-Hydroxy-Fatty Acids by Lipases in Solvent-Free Media and Their Physical Properties

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Pseudomonas aeruginosa 42A2 is known to produce two hydroxy-fatty acids, 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S,S)-dihydroxy-8(E)-octadecenoic acids, when cultivated in a mineral medium using oleic acid as a single carbon source. These compounds were purified, 91 and 96 % respectively, to produce two new families of estolides: trans-8-estolides and saturated estolides from the monohydroxylated monomer. trans-8-estolides were produced by three different lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM) with reaction yields between 68.4 ± 2.1 and 94.7 ± 2.4 % in a solvent-free medium at 80 °C in 168 h under vacuum. Novozym 435 was found to be the most efficient biocatalyst for both hydroxy-fatty acids with reaction yields of 71.7 ± 2.3 and 94.7 ± 2.4 %, respectively. Moreover, saturated estolides were also produced from a saturated 10(S)-hydroxy-8(E)-octadecenoic. These estolides were chemically and enzymatically synthesized with Novozym 435, under the previous described reaction conditions with yields of 60.7 ± 2.1 and 71.2 ± 2.3 % respectively. Finally, viscosity, glass transition temperature, decomposition temperatures and enthalpies were determined to characterize both types of estolides. Thermal applications for both types of polyesters were improved since glass transition temperatures were lowered and decomposition temperatures were increased, with respect to their corresponding substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kleiman R, Spencer GF, Earle FR, Nieschlang HJ (1972) Tetra-acid triglycerides containing new hydroxy eicosadienoyl moiety in Lesquerella auriculata seed oil. Lipids 7:660–665

    Article  CAS  Google Scholar 

  2. Burg DA, Kleiman R (1991) Preparation of meadowfoam dimer acids and dimer esters, and their use as lubricants. J Am Oil Chem Soc 68:600–603

    Article  CAS  Google Scholar 

  3. Hayes DG, Kleiman R, Phillips BS (1995) The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J Am Oil Chem Soc 72:559–569

    Article  CAS  Google Scholar 

  4. Smedley SR, Schroeder FC, Weibel DB, Meinwald J, Lafleur KA, Renwick JA, Rutowski R, Eisner T (2002) Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proc Natl Acad Sci USA 99:6822–6827

    Article  CAS  Google Scholar 

  5. Butovich IA (2009) Cholesteryl esters as a depot for very long chain fatty acids in human meibum. J Lipid Res 50:501–513

    Article  CAS  Google Scholar 

  6. Peláez M, Orellana C, Marqués A, Busquets M, Guerrero A, Manresa A (2003) Natural estolides produced by Pseudomonas sp. 42A2 grown on oleic acid: production and characterization. J Am Oil Chem Soc 80:859–866

    Article  Google Scholar 

  7. Martin-Arjol I, Busquets M, Manresa A (2013) Production of 10(S)-hydroxy-8(E)-octadecenoic acid mono-estolides by lipases in non-aqueous media. Process Biochem 48:224–230

    Article  CAS  Google Scholar 

  8. Cermak SC, Bredsguard JW, John BL, McCalvin JS, Thompson T, Isbell KN, Feken KA, Isbell TA, Murray RE (2013) Synthesis and physical properties of new estolide esters. Ind Crops Prod 46:386–391

    Article  CAS  Google Scholar 

  9. Aguieiras ECG, Veloso CO, Bevilaqua JV, Rosas DO, Silva MAP da, Langone MAP (2011) Estolides synthesis catalyzed by immobilized lipases. Enzyme Res 2011:7 pages

  10. Dang HT, Hayes DG (2005) Feed batch addition of saccharide during saccharide–fatty acid esterification catalyzed by immobilized lipase: time course, water activity, and kinetic model. J Am Oil Chem Soc 82:487–493

    Article  CAS  Google Scholar 

  11. Pyo SH, Hayes DG (2008) Designs of bioreactor systems for solvent-free lipase-catalyzed synthesis of fructose–oleic acid esters. J Am Oil Chem Soc 86:521–529

    Article  Google Scholar 

  12. Ye R, Pyo S-H, Hayes DG (2010) Lipase-catalyzed synthesis of saccharide–fatty acid esters using suspensions of saccharide crystals in solvent-free media. J Am Oil Chem Soc 87:281–293

    Article  CAS  Google Scholar 

  13. Ye R, Hayes DG, Burton R (2014) Effects of particle size of sucrose suspensions and pretreatments of enzymes on lipase-catalyzed synthesis of sucrose–oleic acid esters. J Am Oil Chem Soc 91:1891–1901

    Article  CAS  Google Scholar 

  14. Hayes DG, Mannam VP, Ye R, Zhao H, Ortega S, Montiel MC (2012) Modification of oligo–ricinoleic acid and its derivatives with 10-undecenoic acid via lipases to enable their assembly into star polymers via free radical polymerization. Polymers 4:1037–1055

    Article  CAS  Google Scholar 

  15. Lu W, Ness JE, Xie W, Zhang X, Minshull J, Gross RA (2010) Biosynthesis of monomers for plastics from renewable oils. J Am Oil Chem Soc 132:15451–15455

    Article  CAS  Google Scholar 

  16. Yang Y, Lu W, Zhang X, Xie W, Cai M, Gross RA (2010) Two-step biocatalytic route to biobased functional polyesters from omega–carboxy fatty acids and diols. Biomacromolecules 11:259–268

    Article  CAS  Google Scholar 

  17. Compton DL, Laszlo JA, Berhow MA (2000) Lipase-catalyzed synthesis of ferulate esters. J Am Oil Chem Soc 77:513–519

    Article  CAS  Google Scholar 

  18. Borgdorf R, Warwel S (1999) Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid. Appl Microbiol Biotechnol 51:480–485

    Article  CAS  Google Scholar 

  19. Warwel S, Borgdorf R, Brühl L (1999) Substrate selectivity of lipases in the esterification of oleic acid, linoleic acid, linolenic acid and their all-trans-isomers and in the transesterification of cis/trans-isomers of linoleic acid methyl ester. Biotechnol Lett 21:431–436

    Article  CAS  Google Scholar 

  20. Martin-Arjol I, Busquets M, Isbell TA, Manresa A (2013) Production of 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S, S)-dihydroxy-8(E)-octadecenoic ethyl esters by Novozym 435 in solvent-free media. Appl Microbiol Biotechnol 97:8041–8048

    Article  CAS  Google Scholar 

  21. Cermak SC, Bredsguard JW, John BL, Kirk K, Thompson T, Isbell KN, Feken KA, Isbell TA, Murray R (2013) Physical properties of low viscosity estolide 2-ethylhexyl esters. J Am Oil Chem Soc 90:1895–1902

    Article  CAS  Google Scholar 

  22. Martin-Arjol I, Llorens JL, Manresa A (2014) Yield and kinetic constants estimation in the production of hydroxy fatty acids from oleic acid in a bioreactor by Pseudomonas aeruginosa 42A2. Appl Microbiol Biotechnol 98:9609–9621

    Article  CAS  Google Scholar 

  23. Ortega-Requena S, Gómez JL, Bastida J, Máximo F, Montiel MC, Murcia MD (2014) Study of different reaction schemes for the enzymatic synthesis of polyglycerol polyricinoleate. J Sci Food Agric 94:2308–2316

    Article  CAS  Google Scholar 

  24. Bódalo A, Bastida J, Máximo MF, Montiel MC, Murcia MD, Ortega S (2009) Influence of the operating conditions on lipase-catalysed synthesis of ricinoleic acid estolides in solvent-free systems. Biochem Eng J 44:214–219

    Article  Google Scholar 

  25. Price NPJ, Manitchotpisit P, Vermillion KE, Bowmanc MJ, Leathers TD (2013) Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32

    Article  CAS  Google Scholar 

  26. Isbell TA, Kleiman R (1994) characterization of estolides produced from the acid-catalyzed condensation of oleic acid. J Am Oil Chem Soc 71:379–383

    Article  CAS  Google Scholar 

  27. Santos JC, Bueno T, Rós PCMd, Castro HFd (2007) Lipase-catalyzed synthesis of butyl esters by direct esterification in solvent-free system. J Chem Technol Biotechnol 82:956–961

    Article  CAS  Google Scholar 

  28. Chisti Y, M-Young M (1999) Fermentation technology, bioprocessing, scale-up and manufacture. Biotechnol Sci Bus Cap 13:177–222

    Google Scholar 

  29. Horchani H, Bouaziz A, Gargouri Y, Sayari A (2012) Immobilized Staphylococcus xylosus lipase-catalysed synthesis of ricinoleic acid esters. J Mol Catal B Enzym 75:35–42

    Article  CAS  Google Scholar 

  30. Vrkoslav V, Míkova R, Cvacka J (2008) Characterization of natural wax esters by MALDI-TOF mass spectrometry. J Mass Spectrom 44:101–110

    Article  Google Scholar 

  31. Bódalo-Santoyo A, Bastida-Rodríguez J, Máximo-Martín MF, Montiel-Morte MC, Murcia-Almagro MD (2005) Enzymatic biosynthesis of ricinoleic acid estolides. Biochem Eng J 26:155–158

    Article  Google Scholar 

  32. Kelly AR, Hayes DG (2006) Lipase-catalyzed synthesis of polyhydric alcohol-poly(ricinoleic acid) ester star polymers. J Appl Polym Sci 101:1646–1656

    Article  CAS  Google Scholar 

  33. Isbell TA, Kleiman R (1996) Mineral acid-catalyzed condensation of meadowfoam fatty acids into estolides. J Am Oil Chem Soc 73:1097–1107

    Article  CAS  Google Scholar 

  34. Cermak SC, Isbell TA (2001) Synthesis of estolides from oleic and saturated fatty acids. J Am Oil Chem Soc 78:557–565

    Article  CAS  Google Scholar 

  35. Isbell TA, Lowery BA, DeKeyser SS, Winchell ML, Cermak SC (2006) Physical properties of triglyceride estolides from lesquerella and castor oils. Ind Crops Prod 23:256–263

    Article  CAS  Google Scholar 

  36. Ortega-Requena S, Bódalo-Santoyo A, Bastida-Rodríguez J, Máximo-Martín MF, Montiel-Morte MC, Gómez-Gómez M (2014) Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochem Eng J 84:91–97

    Article  CAS  Google Scholar 

  37. Cermak SC, Isbell TA (2002) Physical properties of saturated estolides and their 2-ethylhexyl esters. Ind Crops Prod 16:119–127

    Article  CAS  Google Scholar 

  38. García-Zapateiro LA, Franco JM, Valencia C, Delgado MA, Gallegos C, Ruiz-Méndez MV (2013) Chemical, thermal and viscous characterization of high-oleic sunflower and olive pomace acid oils and derived estolides. Grasas Aceites 64:497–508

    Article  Google Scholar 

  39. Giap SGE (2010) The hidden property of arrhenius-type relationship: viscosity as a function of temperature. J Phys Sci 21:29–39

    CAS  Google Scholar 

  40. Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C (2010) Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind Crops Prod 32:607–612

    Article  CAS  Google Scholar 

  41. Valeri D, Meirelles AJA (1997) Viscosities of fatty acids, triglycerides, and their binary mixtures. J Am Oil Chem Soc 74:1221–1226

    Article  CAS  Google Scholar 

  42. Cermak SC, Brandon KB, Isbell TA (2006) Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind Crops Prod 23:54–64

    Article  CAS  Google Scholar 

  43. Isbell TA, Edgcomb MR, Lowery BA (2001) Physical properties of estolides and their ester derivatives. Ind Crops Prod 13:11–20

    Article  CAS  Google Scholar 

  44. Cermak SC, Isbell TA (2009) Synthesis and physical properties of mono-estolides with varying chain lengths. Ind Crops Prod 29:205–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad (CTQ2014-59632-R), Spain, and by the IV Pla de Recerca de Catalunya (Generalitat de Catalunya) grant 2014SGR534. I. Martin-Arjol was a grateful recipient of an APIF-fellowship from the University of Barcelona. We also thank Novozymes for kindly providing the lipase samples, Karl E. Vermillion who performed the NMR experiments in the National Center for Agricultural Utilization Research, USDA, in Peoria, Il, USA; Dr. I. Fernández Vidal and Dr. M. C. Puigjaner Vallet from the Centres Científics i Tecnològics (CCiT) of the University of Barcelona who performed the spectrometric and calorimetric analyses of the samples, respectively; and Dr. Joan Llorens Llacuna from Chemical Engineering Department of University of Barcelona who facilitated the rheometer utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ignacio Martin-Arjol or Angels Manresa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2247 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin-Arjol, I., Isbell, T.A. & Manresa, A. Mono-Estolide Synthesis from trans-8-Hydroxy-Fatty Acids by Lipases in Solvent-Free Media and Their Physical Properties. J Am Oil Chem Soc 92, 1125–1141 (2015). https://doi.org/10.1007/s11746-015-2687-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2687-3

Keywords

Navigation