Journal of the American Oil Chemists' Society

, Volume 92, Issue 1, pp 95–109 | Cite as

Determination of the Hansen Solubility Parameters of Vegetable Oils, Biodiesel, Diesel, and Biodiesel–Diesel Blends

  • Matheus M. BatistaEmail author
  • Reginaldo Guirardello
  • Maria A. Krähenbühl
Original Paper


The search for alternative fuels has been gaining attention in recent decades. The replacement of fossil fuels is driven by environmental, economic, and social factors, since the whole of society is dependent on their usage; and in this context, one alternative that has been highlighted is the use of biodiesel. Biodiesel represents a renewable, biodegradable, non-inflammable, and low toxicity alternative to diesel. In this study, the Hansen solubility parameters (HSPs) and the interaction radii (R 0) were determined for the following materials: used frying oil, coconut oil, palm oil, biodiesel from used frying oil, diesel, and biodiesel–diesel blends (B10 and B20), using 45 solvents and solvent mixtures. The values found for the solubility parameters of the used frying oil and coconut oil were very close to those found for the biodiesel; however, the biofuel showed higher solubility in polar solvents. The values of solubility parameters of diesel, B10, and B20 were similar, increasing values according to the amount (by volume) of biodiesel added to diesel fuel.


Vegetable oils Biodiesel Diesel Fuel blends Hansen solubility parameters 



The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for its financial support.


  1. 1.
    Nitske WR, Wilson, CM (1965) Rudolf Diesel: pioneer of the age of power. University of Oklahoma Press, NormanGoogle Scholar
  2. 2.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  3. 3.
    Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Inform 12:1103–1107Google Scholar
  4. 4.
    Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, ChampaignCrossRefGoogle Scholar
  5. 5.
    Muppaneni T, Reddy HK, Ponnusamy S, Patil PD, Sun Y, Dailey P, Deng S (2013) Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: a response surface methodology approach. Fuel 107:633–640CrossRefGoogle Scholar
  6. 6.
    Tiwari GN, Mishra RK (2012) Advanced renewable energy sources. RSC, Cambridge, Chap 4Google Scholar
  7. 7.
    Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305CrossRefGoogle Scholar
  8. 8.
    Schumacher LG, Borget SC, Fossen D, Goetz W, Hires WG (1996) Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends. Bioresour Technol 57:31–36CrossRefGoogle Scholar
  9. 9.
    Conceição MM, Fernandes VJ, Araújo AS, Farias MF, Santos LMG (2007) Thermal and oxidative degradation of castor oil biodiesel. Energy Fuels 21:1522–1527CrossRefGoogle Scholar
  10. 10.
    Machado AB, Ardila YC, de Oliveira LH, Aznar M, Maciel MRW (2012) Liquid–liquid equilibria in ternary and quaternary systems present in biodiesel production from soybean oil at (298.2 and 333.2) K. J Chem Eng Data 57:1417–1422CrossRefGoogle Scholar
  11. 11.
    Demirbas A (2008) Biodiesel. Springer, London, Chap 4Google Scholar
  12. 12.
    Encinar JM, González JF, Rodrígues-Reinares A (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process Technol 88:513–522CrossRefGoogle Scholar
  13. 13.
    Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075CrossRefGoogle Scholar
  14. 14.
    Mesquita FMR, Evangelista NS, Sant’Ana HB, Santiago-Aguiar RS (2012) Liquid–liquid equilibrium for the glycerol + alcohol + coconut biodiesel system at different temperatures and atmospheric pressure. J Chem Eng Data 57:3557–3562CrossRefGoogle Scholar
  15. 15.
    Candeia RA, Freitas JCO, Souza MA, Conceição MM, Santos IMG, Soledade LEB, Souza AG (2007) Thermal and rheological behavior of diesel and methanol biodiesel blends. J Therm Anal Calorim 87:653–656CrossRefGoogle Scholar
  16. 16.
    Januan J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev 14:1312–1320CrossRefGoogle Scholar
  17. 17.
    Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC, Boca Raton, Chapt 1CrossRefGoogle Scholar
  18. 18.
    Hansen CM (2008) Polymer science applied to biological problems: prediction of cytotoxic drug interactions with DNA. Eur Polym J 44:2741–2748CrossRefGoogle Scholar
  19. 19.
    Burke J (1984) Solubility parameters: theory and application Google Scholar
  20. 20.
    Ma J, Larsen RM (2013) Comparative study on dispersion and interfacial properties of single walled carbon nanotube/polymer composites using Hansen solubility parameters. Appl Mater Interfaces 5:1287–1293CrossRefGoogle Scholar
  21. 21.
    Hansen C, Skaarup K (1967) The three dimensional solubility parameter—key to paint component affinities. III. Independent calculation of the parameter components. J Paint Technol 39:511–514Google Scholar
  22. 22.
    Medina Gonzales Y, de Caro P, Thiebaud-Roux S, Lacaze-Dafaure C (2007) Fatty acid methyl esters as biosolvents of epoxy resins: a physicochemical study. J Solut Chem 36:437–446CrossRefGoogle Scholar
  23. 23.
    Srinivas K, Potts TM, King JW (2009) Characterization of solvent properties of methyl soyate by inverse gas chromatography and solubility parameters. Green Chem 11:1581–1588CrossRefGoogle Scholar
  24. 24.
    Bobbitt NS, King JW (2010) Physicochemical characterization of dilute n-alcohol/biodiesel mixtures by inverse gas chromatography. J Chromatogr A 1217:7898–7906CrossRefGoogle Scholar
  25. 25.
    Vincent JD, Srinivas K, King JW (2012) Characterization of the solvent properties of glycerol using inverse gas chromatography and solubility parameters. J Am Oil Chemists’ Soc 89(9):1585–1597CrossRefGoogle Scholar
  26. 26.
    Candeia RA, Silva MCD, Carvalho Filho JR, Brasilino MGA, Bicudo TC, Santos IMG (2009) Influence of soybean biodiesel content on basic properties of biodiesel—diesel blends. Fuel 88:738–743CrossRefGoogle Scholar
  27. 27.
    Joshi RM, Pegg MJ (2007) Flow properties of biodiesel fuel blends at low temperatures. Fuel 86:143–151CrossRefGoogle Scholar
  28. 28.
    Batista MM, Guirardello R, Krähenbühl MA (2013) Determination of the solubility parameters of biodiesel from vegetable oils. Energy Fuels 27:7497–7509CrossRefGoogle Scholar
  29. 29.
    Jing Ma, Zhou L (2012) A new procedure for calculating Hansen solubility parameters of carbon nanotube/polymer composites. Polym Bull 68:1053–1063CrossRefGoogle Scholar
  30. 30.
    Gharagheizi F (2007) New procedure to calculate the Hansen solubility parameters of polymers. J Appl Polym Sci 103:31–36CrossRefGoogle Scholar
  31. 31.
    Redelius P (2004) Bitumen solubility model using Hansen solubility parameter. Energy Fuels 18:1087–1092CrossRefGoogle Scholar
  32. 32.
    Acevedo A, Castro A, Vásquez E, Marcano F, Ranaudo MA (2010) Investigation of physical chemistry properties of asphaltenes using solubility parameters of asphaltenes and their fractions A1 and A2. Energy Fuels 24:5921–5933CrossRefGoogle Scholar
  33. 33.
    Vebber GC, Pranke P, Pereira CN (2014) Calculating Hansen solubility parameters of polymers with genetic algorithms. J Appl Polym Sci 131:1CrossRefGoogle Scholar
  34. 34.
    King JW (1995) Determination of the solubility parameter of soybean oil by inverse gas chromatography. LWT-Food Sci Technol 28:190–195CrossRefGoogle Scholar
  35. 35.
    Stirna U, Fridrihsone A, Misane M, Vilsone D (2012) Rapeseed oil as renewable resource for polyol synthesis. Sci J Riga Tech Univ Environ Clim Technol 6:85–90Google Scholar
  36. 36.
    Gunstone FD, Harwood JL, Padley FB (1994) The lipid handbook, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  37. 37.
    BR-Petrobras Distributor (2014) Accessed 1 Jan 2014
  38. 38.
    Thiebaud-Roux S, de Caro P (2007) Soy-based biosolvents: a real alternative to VOC-generating industrial solvents. Presented at the international seminar “Soybean—renewable resource for industrial non-food uses”, Rio de Janeiro, BrazilGoogle Scholar
  39. 39.
    Rowe RC (1988) Interaction of lubricants with microcrystalline cellulose and anhydrous lactose—a solubility parameter approach. Int J Pharm 41:223–226CrossRefGoogle Scholar
  40. 40.
    Zografi G, Tam SS (1976) Wettability of pharmaceutical solids: estimates of solid surface polarity. J Pharm Sci 65:1145–1149CrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Matheus M. Batista
    • 1
    Email author
  • Reginaldo Guirardello
    • 1
  • Maria A. Krähenbühl
    • 1
  1. 1.School of Chemical EngineeringUNICAMPCampinasBrazil

Personalised recommendations