The Properties of Lauric Acid and Their Significance in Coconut Oil

Abstract

The primary fatty acid of coconut oil is lauric acid, which is present at approximately 45–53 %. The metabolic and physiological properties of lauric acid account for many of the properties of coconut oil. Coconut oil is rapidly metabolized because it is easily absorbed and lauric acid is easily transported. Detailed studies have shown that the majority of ingested lauric acid is transported directly to the liver where it is directly converted to energy and other metabolites rather than being stored as fat. Such metabolites include ketone bodies, which can be used by extrahepatic tissues, such as the brain and heart, as an immediate form of energy. Studies on the effect of lauric acid on serum cholesterol are contradictory. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation. Lauric acid and monolaurin have demonstrably significant antimicrobial activity against gram positive bacteria and a number of fungi and viruses. Today there are many commercial products that use lauric acid and monolaurin as antimicrobial agents. Because of the significant differences in the properties of lauric acid relative to longer chain fatty acids, they are typically differentiated as medium-chain fatty acids covering C6–C12, and long-chain fatty acids covering C14 and longer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

C6:

Caproic acid

C8:

Caprylic acid

C10:

Capric acid

C12:

Lauric acid

C14:

Myristic acid

C16:

Palmitic acid

C18:0:

Stearic acid

C18:1:

Oleic acid

C18:2:

Linoleic acid

C18:3:

Linolenic acid

LCFA:

Long-chain fatty acid(s)

LCT:

Long-chain triglyceride(s)

MCFA:

Medium-chain fatty acid(s)

MCT:

Medium-chain triglyceride(s)

MLG-1:

1-Monolaurin, 1-monolauryl glyceride

MLG-2:

2-Monolaurin, 2-monolauryl glyceride

TAG:

Triacylglyceride(s)

References

  1. 1.

    Food and Agriculture Organization of the United Nations (Accessed Feb 2014) FAOSTAT. http://faostat.fao.org/site/609/DesktopDefault.aspx?PageID=609#ancor

  2. 2.

    Spitz L (1990) Soap technology for the 1990s. AOCS Press, Champaign

    Google Scholar 

  3. 3.

    Harkins RW, Sarett HP (1968) Medium-Chain Triglycerides. J Am Med Assoc 203(4):272–274 Note: HP Sarett was from Mead-Johnson

    CAS  Article  Google Scholar 

  4. 4.

    MCT Oil is a registered trade mark of Nestle and is a dietetic food which contains mainly C8 and C10

  5. 5.

    Bach AC, Babayan VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36:950–962

    CAS  Google Scholar 

  6. 6.

    Codex standard for named vegetable oils 1999. (Accessed February 2014) CODEX STAN 210-1999 http://www.codexalimentarius.org/input/download/standards/…/CXS_210e.pdf

  7. 7.

    Bezard J, Bugaut M, Clement G (1971) Triglyceride composition of coconut oil. J Am Oil Chem Soc 48:134–139

    CAS  Article  Google Scholar 

  8. 8.

    Marina AM, Che Man YB, Nasimah SAH, Amin I (2009) Chemical properties of virgin coconut oil. J Am Oil Chem Soc 86:301–307

    CAS  Article  Google Scholar 

  9. 9.

    Pham LJ, Casa EP, Gregorio MA, Kwon DY (1998) Triacylglycerols and regiospecific fatty acid analyses of Philippine seed oils. J Am Oil Chem Soc 75(7):807–811

    CAS  Article  Google Scholar 

  10. 10.

    Pham et al. (1998)

  11. 11.

    Dayrit FM, Buenafe OEM, Chainani ET, De Vera IMS (2008) Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy. J Agric Food Chem 56:5765–5769

    CAS  Article  Google Scholar 

  12. 12.

    Bezard JA (1971) The component triglycerides of palm-kernel oil. Lipids 6(9):630–634

    CAS  Article  Google Scholar 

  13. 13.

    Karupaiah T, Sundram K (2007) Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4:16. doi:10.1186/1743-7075-4-16

    Article  Google Scholar 

  14. 14.

    Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60(suppl):1002S–1009S

    CAS  Google Scholar 

  15. 15.

    Decker EA (1996) The role of stereospecific saturated fatty acid positions on lipid nutrition. Nutr Rev 54(4):108–110

    CAS  Article  Google Scholar 

  16. 16.

    Pham et al. (1998)

  17. 17.

    Porsgaard T, Høy CE (2000) Lymphatic transport in rats of several dietary fats differing in fatty acid profile and triacylglycerol structure. J Nutr 130:1619–1624

    CAS  Google Scholar 

  18. 18.

    Pham et al. (1998)

  19. 19.

    Bragdon JH, Karmen A (1960) The fatty acid composition of chylomicrons of chyle and serum following the ingestion of different oils. J Lipid Res 1(2):167–170

    CAS  Google Scholar 

  20. 20.

    Swift LL, Hill JO, Peters JC, Greene HL (1990) Medium-chain fatty acids: evidence for incorporation into chylomicron triglycerides in humans. Am J Clin Nutr 52:834–836

    CAS  Google Scholar 

  21. 21.

    Bach & Babayan (1982)

  22. 22.

    McDonald GB, Saunders DR, Weidman M, Fisher L (1980) Portal venous transport of long-chain fatty acids absorbed from rat intestine. Am J Physiol 239:G141–G150

    CAS  Google Scholar 

  23. 23.

    Goransson G (1965) The metabolism of fatty acids in the rat VIII. Lauric acid and myristic acid. Acta Physiol Scand 64:383–386

    CAS  Article  Google Scholar 

  24. 24.

    Porsgaard and Høy (2000)

  25. 25.

    Debois D, Bralet MP, Le Naour F, Brunelle A, Laprevote O (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF–SIMS imaging. Anal Chem 81:2823–2831

    CAS  Article  Google Scholar 

  26. 26.

    Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271(5):2615–2620

    CAS  Article  Google Scholar 

  27. 27.

    Hamilton JA (1998) Fatty acid transport: difficult or easy? J Lipid Res 39:467–481

    CAS  Google Scholar 

  28. 28.

    Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63(4):1420–1466

    CAS  Google Scholar 

  29. 29.

    Wanders RJA, Vreken P, Den Boer MEJ, Wijburg FA, Van Gennip AH, Ijlst L (1999) Disorders of mitochondrial fatty acyl-CoA β-oxidation. J Inher Metab Dis 22:442–487

    CAS  Article  Google Scholar 

  30. 30.

    Bach A, Weryha A, Schirardin H (1979) Influence of oral MCT or LCT load on glycemia in Wistar and Zucker rats and in guinea pigs. Ann Biol Anim Biochem Biophys 19(3A):625–635

    CAS  Article  Google Scholar 

  31. 31.

    Adas F, Berthou F, Picart D, Lozac’h P, Beaugé F, Amet Y (1998) Involvement of cytochrome P450 2E1 in the (ω–1)-hydroxylation of oleic acid in human and rat liver microsomes. J Lipid Res 39:1210–1219

    CAS  Google Scholar 

  32. 32.

    Jansen EHJM, De Flutter P (1992) Determination of lauric acid metabolites in peroxisome proliferation after derivatization and HPLC analysis with fluorimetric detection. J Liq Chromatogr 15(13):2247–2260

    CAS  Article  Google Scholar 

  33. 33.

    Clarke SE, Baldwin SJ, Bloomer JC, Ayrton AD, Sozio RS, Chenery RJ (1994) Lauric acid as a model substrate for the simultaneous determination of cytochrome P450 2E1 and 4A in hepatic microsomes. Chem Res Toxicol 7(6):836–842

    CAS  Article  Google Scholar 

  34. 34.

    Amet Y, Berthou F, Goasduff T, Salaun JP, Le Breton L, Menez JF (1994) Evidence that cytochrome P450 2E1 is involved in the (omega-1)-hydroxylation of lauric acid in rat liver microsomes. Biochem Biophys Res Commun 203(2):1168–1174

    CAS  Article  Google Scholar 

  35. 35.

    Rioux V, Daval S, Guillou H, Jan S, Legrand P (2003) Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reprod Nutr Dev 43:419–430

    CAS  Article  Google Scholar 

  36. 36.

    Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11

    CAS  Article  Google Scholar 

  37. 37.

    Kezutyte T, Desbenoit N, Brunelle A, Briedis V (2013) Studying the penetration of fatty acids into human skin by ex vivo TOF–SIMS imaging. Biointerphases 8:3. doi:10.1186/1559-4106-8-3

    Article  Google Scholar 

  38. 38.

    Decker EA (1996) The role of stereospecific saturated fatty acid positions on lipid nutrition. Nutr Rev 54(4):108–110

    CAS  Article  Google Scholar 

  39. 39.

    Keys A (1957) Diet and the epidemiology of coronary heart disease. J Am Med Assoc 164(17):1912–1919

    CAS  Article  Google Scholar 

  40. 40.

    Keys A, Anderson JT, Grande F (1965) Serum cholesterol response to changes in the diet IV. Particular saturated fatty acids in the diet. Metabolism 14(7):776–787

    CAS  Article  Google Scholar 

  41. 41.

    Hashim SA, Arteaga A, Van Itallie TB, Cozanitis DA (1960) Effect of a saturated medium-chain triglyceride on serum lipids in man. Lancet 1:1105–1108

    CAS  Article  Google Scholar 

  42. 42.

    German JB, Dillard CJ (2004) Saturated fats: what dietary intake? Am J Clin Nutr 80:550–559

    CAS  Google Scholar 

  43. 43.

    Denke MA (2006) Dietary Fats, fatty acids, and their effects on lipoproteins. Curr Atheroscler Rep 8:466–471

    CAS  Article  Google Scholar 

  44. 44.

    Tholstrup T, Hjerpsted J, Raff M (2011) Palm olein increases plasma cholesterol moderately compared with olive oil in healthy individuals. Am J Clin Nutr 94:1426–1432

    CAS  Article  Google Scholar 

  45. 45.

    Kaunitz H (1970) Nutritional properties of coconut oil. J Am Oil Chem Soc 47:462A–485A

    Article  Google Scholar 

  46. 46.

    Shorland FB, Czochanska Z, Prior IAM (1969) Studies on fatty acid composition of adipose tissue and blood lipids of Polynesians. Am J Clin Nutr 22(5):594–605

    CAS  Google Scholar 

  47. 47.

    Prior IAM, Davison F, Salmonel EF, Czochaska Z (1981) Cholesterol, coconuts and diet in Polynesian atolls—a natural experiment: Pukapuka and Tokelau islands studies. Am J Clin Nutr 34:1552–1561

    CAS  Google Scholar 

  48. 48.

    Florentino RF, Aguinaldo AR (1987) Diet and cardiovascular disease in the Philippines. Philipp J Coconut Stud 13(2):56–70

    Google Scholar 

  49. 49.

    Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A et al (2012) Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR)γ activators and pan-PPAR partial agonists. PLoS One 7(5):e36297. doi:10.1371/journal.pone.0036297

    CAS  Article  Google Scholar 

  50. 50.

    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 94:4318–4323

    CAS  Article  Google Scholar 

  51. 51.

    Shabalina IG, Backlund EC, Bar-Tana J, Cannon B, Nedergaard J (2008) Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism. Biochim Biophys Acta 1777:642–650

    CAS  Article  Google Scholar 

  52. 52.

    Blesneac I, Ravaud S, Machillot P, Zoonens M, Masscheylen S, Miroux B, Vivaudou M, Pebay-Peyroula E (2012) Assaying the proton transport and regulation of UCP1 using solid supported membranes. Eur Biophys J 41:675–679

    CAS  Article  Google Scholar 

  53. 53.

    Samartsev V, Marchik E, Shamagulova L (2011) Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter. Biochem 76(2):217–224

    CAS  Google Scholar 

  54. 54.

    Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–413

    CAS  Article  Google Scholar 

  55. 55.

    DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72(4):905–911

    CAS  Google Scholar 

  56. 56.

    Galbraith H, Miller TB, Paton AM, Thompson JK (1971) Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bact 34(4):803–813

    CAS  Article  Google Scholar 

  57. 57.

    Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2(1):23–28

    CAS  Article  Google Scholar 

  58. 58.

    Kabara et al. (1972)

  59. 59.

    Kabara JJ (1979) Toxicological, bactericidal and fungicidal fatty acids and some derivatives. J Am Oil Chem Soc 56:760A–767A

    CAS  Article  Google Scholar 

  60. 60.

    Hornung B, Amtmann E, Sauer G (1994) Lauric acid inhibits the maturation of vesicular stomatitis virus. J Gen Virol 75:353–361

    CAS  Article  Google Scholar 

  61. 61.

    Galbraith H, Miller TB (1973) Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J Appl Bact 36(4):635–646

    CAS  Article  Google Scholar 

  62. 62.

    Galbraith H, Miller TB (1973) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bact 36(4):647–658

    CAS  Article  Google Scholar 

  63. 63.

    Schuster GS, Dirksen TR, Ciarlone AE, Burnett GW, Reynolds MT, Lankford MT (1980) Anticaries and antiplaque potential of free-fatty acids in vitro and in vivo. Pharmacol Ther Dent 5(1–2):25–33

    CAS  Google Scholar 

  64. 64.

    Schlievert PM, Deringer JR, Kim MH, Projan SJ, Novick RP (1992) Effect of glycerol monolaurate on bacterial growth and toxin production. Antimicrob Agents Chemother 36(3):626–631

    CAS  Article  Google Scholar 

  65. 65.

    Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F, Novick RP (1994) Glycerol monolaurate inhibits the production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J Bact 176(14):4204–4209

    CAS  Google Scholar 

  66. 66.

    Ruzin A, Novick RP (2000) Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bact 182(9):2668–2671

    CAS  Article  Google Scholar 

  67. 67.

    Sun CQ, O’Connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol 36:9–17

    CAS  Article  Google Scholar 

  68. 68.

    Petschow BW, Batema RP, Ford LL (1996) Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother 40(2):302–306

    CAS  Google Scholar 

  69. 69.

    Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H (2001) In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 45(11):3209–3212

    CAS  Article  Google Scholar 

  70. 70.

    Bartolotta S, Garcí CC, Candurra NA, Damonte EB (2001) Effect of fatty acids on arenavirus replication: inhibition of virus production by lauric acid. Arch Virol 146(4):777–790

    CAS  Article  Google Scholar 

  71. 71.

    Skrivanova E, Marounek M, Dlouha G, Kanka J (2005) Susceptibility of Clostridium perfringens to C2–C18 fatty acids. Lett Appl Microbiol 41:77–81

    CAS  Article  Google Scholar 

  72. 72.

    Kitahara T, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Ichikawa N, Nakashima M, Sasaki H, Higuchi S (2006) In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 27:51–57

    CAS  Article  Google Scholar 

  73. 73.

    Kabara JJ (1978) Structure-function relationships of surfactants as antimicrobial agents. J Soc Cosmet Chem 29:733–741

    CAS  Google Scholar 

  74. 74.

    Lin YC, Schlievert PM, Anderson MJ, Fair CL, Schaefers MM et al (2009) Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 In Vitro and In Vivo. PLoS One 4(10):e7499. doi:10.1371/journal.pone.0007499

    Article  Google Scholar 

  75. 75.

    Ruzin & Novick (2000)

  76. 76.

    Chu-Kung AF, Bozzelli KN, Lockwood NA, Haseman JR, Mayo KH, Tirrell MV (2004) Promotion of peptide antimicrobial activity by fatty acid conjugation. Biocon Chem 15:530–535

    CAS  Article  Google Scholar 

  77. 77.

    Nobmann P, Smith A, Dunne J, Henehan G, Bourke P (2009) The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listera spp. and food spoilage microorganisms. Int J Food Microbiol 128:440–445

    CAS  Article  Google Scholar 

  78. 78.

    Watanabe T, Katayama S, Matsubara M, Honda Y, Kuwahara M (2000) Antibacterial carbohydrate monoesters suppressing cell growth of streptococcus mutans in the presence of sucrose. Curr Microbiol 41(3):210–213

    CAS  Article  Google Scholar 

  79. 79.

    Kim Y-S, Kim H, Jung E, Kim J-H, Hwang W, Kang E-J, Lee S, Ha B-J, Lee J, Park D (2012) A novel antibacterial compound from Siegesbeckia glabrescens. Molecules 17:12469–12477. doi:10.3390/molecules171112469

    CAS  Article  Google Scholar 

  80. 80.

    Yuhas R, Pramuk K, Lien EL (2006) Human milk fatty acid composition from nine countries varies most in DHA. Lipids 41(9):851–858

    CAS  Article  Google Scholar 

  81. 81.

    Newburg DS, Walker WA (2007) Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 61:2–8

    CAS  Article  Google Scholar 

  82. 82.

    Batovska DI, Todorova IT, Tsvetkova IV, Najdenski HM (2009) Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Pol J Microbiol 58(1):43–47

    CAS  Google Scholar 

  83. 83.

    Buňková L, Buňka F, Janiš R, Krejčí J, Doležálková I, Pospíšil Z, Růžička J, Tremlová B (2011) Comparison of antibacterial effect of seven 1-monoglycerides on food-borne pathogens or spoilage bacteria. Acta Vet Brno 80:29–39

    Article  Google Scholar 

  84. 84.

    Eshghjoo S, Mahdavi S, Daustani M, Ahmadi R, Razavi SM, and Neyriz M (2013) The effects of monolaurin on E. coli O157:H7 growth in dairy food products. 4th international conference on medical, biological and pharmaceutical sciences (ICMBPS’2013), Dubai (UAE) 6–7 Oct 2013

  85. 85.

    Kelsey JA, Bayles KW, Shafii B, McGuire MA (2006) Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41(10):951–961

    CAS  Article  Google Scholar 

  86. 86.

    Skrivanova et al. (2005)

  87. 87.

    Peterson ML, Schlievert PM (2006) Glycerol monolaurate inhibits the effects of gram-positive select agents on eukaryotic cells. Biochemistry 45(7):2387–2397

    CAS  Article  Google Scholar 

  88. 88.

    Kabara (1978)

  89. 89.

    Kabara JJ (1977) Fatty acids and derivatives of antimicrobial agents. US Patent 4,002,775

  90. 90.

    Google patents (Accessed February 2014) http://www.google.com/patents/US4002775

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabian M. Dayrit.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dayrit, F.M. The Properties of Lauric Acid and Their Significance in Coconut Oil. J Am Oil Chem Soc 92, 1–15 (2015). https://doi.org/10.1007/s11746-014-2562-7

Download citation

Keywords

  • Coconut oil
  • Lauric acid
  • Medium-chain fatty acid
  • Medium-chain triglyceride
  • Monolaurin