Skip to main content
Log in

Influence of a Diet Enriched with Perilla Seed Bran on the Composition of Omega-3 Fatty Acid in Nile Tilapia

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

This study evaluated the effect of inclusion of perilla seed bran (PSB) in the diet of Nile tilapia genetically improved farmed tilapia (GIFT) on the concentration of fatty acid n-3 polyunsaturated fatty acids (PUFAs) according to the function of feeding time. The GIFT were cultivated in net cages for 60 days using a control diet with soybean oil and supplemented with PSB. Analyses of the proximate composition and quantification of fatty acids (mg g−1 of total lipids) were performed in muscle tissue every 15 days. The PSB diet influenced the lipid composition of GIFT fillets by linolenic acid incorporation, which was approximately 384 %, resulting in an increase of 5.2 times the sum of n-3 PUFA. On the other hand, there was a decrease in the sum of saturated fatty acids. During treatment, there was a continuous increase in n-3 PUFA, proving the influence of feeding time in the lipid composition of GIFT fillets. The indices of the lipid quality of fillets coming from fish fed the PSB diet were improved. Of these indices, a n-6/n-3 ratio presented a significant reduction of 74.15 %, proving the quality of the dietary lipid. Therefore, the inclusion of PSB significantly altered the fatty acid muscle tissue composition of GIFT during feeding time, contributing to an increase in its nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO (2012) The state of world fisheries and aquaculture 2012. FAO Fisheries and Aquaculture Department, Rome, p 209

    Google Scholar 

  2. Lopera-Barrero NM, Ribeiro RP, Povh JA et al (2011) Produção de organismos aquáticos: uma visão geral no Brasil e no mundo. 143–215. ISBN: 978-85-98934-07-5

  3. Fülber VM, Mendez LDV, Braccini GL et al (2009) Desempenho comparativo de três linhagens de tilápia do Nilo Oreochromis niloticus em diferentes densidades de estocagem. Acta Sci Anim Sci 31:177–182. doi:10.4025/actascianimsci.v31i2.464

    Article  Google Scholar 

  4. Khaw HL, Ponzoni RW, Hamzah A et al (2012) Genotype by production environment interaction in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 326–329:53–60. doi:10.1016/j.aquaculture.2011.11.016

    Article  Google Scholar 

  5. Yoshida GM, de Oliveira CAL, de Oliveira SN et al (2013) Associação entre características de desempenho de tilápia-do-nilo ao longo do período de cultivo. Pesqui Agropecuária Bras 48:816–824. doi:10.1590/S0100-204X2013000800002

    Article  Google Scholar 

  6. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732. doi:10.1111/j.1365-2109.2008.02150.x

    Article  CAS  Google Scholar 

  7. Stubhaug I, Tocher DR, Bell JG et al (2005) Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochem Biophys Acta 1734:277–288. doi:10.1016/j.bbalip.2005.04.003

    CAS  Google Scholar 

  8. Silva BCE, Santos HMC, Montanher PF et al (2013) Incorporation of Omega-3 fatty acids in Nile tilapia (Oreochromis niloticus) Fed Chia (Salvia hispanica L.) Bran. J Am Oil Chem Soc 91:429–437. doi:10.1007/s11746-013-2391-0

    Article  Google Scholar 

  9. Kanazawa A, Teshima S, Sakamoto M, Awal MA (1980) Requirements of Tilapia zillii for essential fatty acids. Bull Jpn Soc Sci Fish 46:1353–1356. doi:10.2331/suisan.46.1353

    Article  CAS  Google Scholar 

  10. Takeuchi T, Satoh S, Watanabe T (1983) Requirement of Tilapia nilotica for essential fatty acids. Bull Jpn Soc Sci Fish 49:1127. doi:10.2331/suisan.49.1127

    Article  CAS  Google Scholar 

  11. Stickney RR, Wurts WA (1986) Growth response of blue tilapias to selected levels of dietary menhaden and catfish oils. Prog Fish Cultur 48:107–109. doi:10.1577/1548-8640(1986)48

    Article  CAS  Google Scholar 

  12. Santiago CB, Reyes OS (1993) Effects of dietary lipid source on reproductive performance and tissue lipid levels of Nile tilapia Oreochromis niloticus (Linnaeus) broodstock. J Appl Ichthyol 9:33–40. doi:10.1111/j.1439-0426.1993.tb00385.x

    Article  CAS  Google Scholar 

  13. Yildirim-Aksoy M, Lim C, Davis DA et al (2007) Influence of dietary lipid sources on the growth performance, immune response and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus iniae challenge. J Appl Aquac 19:29–49. doi:10.1300/J028v19n02_02

    Article  Google Scholar 

  14. Chou B-S, Shiau S-Y, Hung SSO (2001) Effect of dietary cod liver oil on growth and fatty acids of juvenile hybrid tilapia. N Am J Aquac 63:277–284. doi:10.1577/1548-8454(2001)063<0277:EODCLO>2.0.CO;2

    Article  Google Scholar 

  15. Li E, Lim C, Klesius PH, Welker TL (2013) Growth, body fatty acid composition, immune response, and resistance to Streptococcus iniae of Hybrid Tilapia, Oreochromis niloticus × Oreochromis aureus, fed diets containing various levels of linoleic and linolenic acids. J World Aquac Soc 44:42–55. doi:10.1111/jwas.12014

    Article  Google Scholar 

  16. Lim C, Yildirim-Aksoy M, Klesius P (2011) Lipid and fatty acid requirements of tilapias. N Am J Aquac 73:188–193. doi:10.1080/15222055.2011.579032

    Article  Google Scholar 

  17. Mozaffarian D, Wu JHY (2012) (n-3) Fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 142:614S–625S. doi:10.3945/jn.111.149633

    Article  CAS  Google Scholar 

  18. Calder PC (2013) n-3 Fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc 72:326–336. doi:10.1017/S0029665113001031

    Article  CAS  Google Scholar 

  19. Cockbain AJ, Toogood GJ, Hull MA (2012) Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 61:135–149. doi:10.1136/gut.2010.233718

    Article  CAS  Google Scholar 

  20. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43. doi:10.1016/j.brainres.2008.08.078

    Article  CAS  Google Scholar 

  21. Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44:203–215. doi:10.1007/s12035-010-8162-0

    Article  CAS  Google Scholar 

  22. Asif M (2011) Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59. doi:10.1007/s13596-011-0002-x

    Article  Google Scholar 

  23. Sargi SC, Silva BC, Santos HMC et al (2013) Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci Technol 33:541–548. doi:10.1590/S0101-20612013005000057

    Google Scholar 

  24. Adhikari P, Hwang KT, Park JN, Kim CK (2006) Policosanol content and composition in perilla seeds. J Agric Food Chem 54:5359–5362. doi:10.1021/jf060688k

    Article  CAS  Google Scholar 

  25. Kurowska E, Dresser G, Deutsch L et al (2003) Bioavailability of omega-3 essential fatty acids from perilla seed oil. Prostaglandins, Leukot Essent Fat Acids 68:207–212. doi:10.1016/S0952-3278(02)00271-5

    Article  CAS  Google Scholar 

  26. Peiretti PG, Gasco L, Brugiapaglia A, Gai F (2011) Effects of perilla (Perilla frutescens L.) seeds supplementation on performance, carcass characteristics, meat quality and fatty acid composition of rabbits. Livest Sci 138:118–124. doi:10.1016/j.livsci.2010.12.007

    Article  Google Scholar 

  27. National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington

    Google Scholar 

  28. Hayashi C, Boscolo WR, Soares CM et al (1999) Uso de diferentes graus de moagem dos ingredientes em dietas para a tilápia-do-Nilo (Oreochromis niloticus L.) na fase de crescimento. Acta Sci Anim Sci 21:733–737. doi:10.4025/actascianimsci.v21i0.4340

    Google Scholar 

  29. AOAC (Association of Official Analytical Chemists) (1998) Official methods of analysis of AOAC International, 16th edn. AOAC, Arlington

    Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099

    Article  CAS  Google Scholar 

  31. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476

    CAS  Google Scholar 

  32. Maia EL, Rodriguez-Amaya DB (1993) Avaliação de um método simples e econômico para a metilação de ácidos graxos com lipídios de diversas espécies de peixes. Rev Inst Adolfo Lutz 53:27–35

    CAS  Google Scholar 

  33. Joseph JD, Ackman RG (1992) Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: collaborative study. J AOAC Int 75:488–506

    CAS  Google Scholar 

  34. Visentainer JV (2012) Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Quim Nova 35:274–279. doi:10.1590/S0100-40422012000200008

    Article  CAS  Google Scholar 

  35. Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338:985–992. doi:10.1016/0140-6736(91)91846-M

    Article  CAS  Google Scholar 

  36. Santos-Silva J, Bessa RJ, Santos-Silva F (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest Prod Sci 77:187–194. doi:10.1016/S0301-6226(02)00059-3

    Article  Google Scholar 

  37. Abrami G, Natiello F, Bronzi P et al (1992) A comparison of highly unsaturated fatty acid levels in wild and farmed eels (Anguilla Anguilla). Comp Biochem Physiol Part B Comp Biochem 101:79–81. doi:10.1016/0305-0491(92)90161-J

    Article  CAS  Google Scholar 

  38. Jauncey K (1998) Tilapia feeds and feeding. Pisces Press Ltd., Stirling, p 241

    Google Scholar 

  39. Moreira AB, Visentainer JV, Souza NE, Matsushita M (2001) Fatty acids profile and cholesterol contents of three Brazilian brycon freshwater fishes. J Food Compos Anal 14:565–574. doi:10.1006/jfca.2001.1025

    Article  CAS  Google Scholar 

  40. Simões MR, Ribeiro CFA, Ribeiro SCA et al (2007) Composição físico-química, microbiológica e rendimento do filé de tilápia tailandesa (Oreochromis niloticus). Food Sci Technol 27:608–613. doi:10.1590/S0101-20612007000300028

    Google Scholar 

  41. Justi K, Hayashi C, Visentainer J et al (2003) The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chem 80:489–493. doi:10.1016/S0308-8146(02)00317-5

    Article  CAS  Google Scholar 

  42. Visentainer JV, de Souza NE, Matsushita M et al (2005) Influence of diets enriched with flaxseed oil on the ?-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chem 90:557–560. doi:10.1016/j.foodchem.2004.05.016

    Article  CAS  Google Scholar 

  43. Carbonera F, Bonafe EG, Martin CA et al (2014) Effect of dietary replacement of sunflower oil with perilla oil on the absolute fatty acid composition in Nile tilapia (GIFT). Food Chem 148:230–234. doi:10.1016/j.foodchem.2013.10.038

    Article  CAS  Google Scholar 

  44. Tonial IB, Stevanato FB, Matsushita M et al (2009) Optimization of flaxseed oil feeding time length in adult Nile tilapia (Oreochromis niloticus) as a function of muscle omega-3 fatty acids composition. Aquac Nutr 15:564–568. doi:10.1111/j.1365-2095.2008.00623.x

    Article  CAS  Google Scholar 

  45. Chen C, Sun B, Li X et al (2013) N-3 essential fatty acids in Nile tilapia, Oreochromis niloticus: quantification of optimum requirement of dietary linolenic acid in juvenile fish. Aquaculture 416–417:99–104. doi:10.1016/j.aquaculture.2013.09.003

    Article  Google Scholar 

  46. Izquierdo MS, Montero D, Robaina L et al (2005) Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250:431–444. doi:10.1016/j.aquaculture.2004.12.001

    Article  CAS  Google Scholar 

  47. Senadheera SD, Turchini GM, Thanuthong T, Francis DS (2011) Effects of dietary α-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio on fatty acid metabolism in Murray cod (Maccullochella peelii peelii). J Agric Food Chem 59:1020–1030. doi:10.1021/jf104242y

    Article  CAS  Google Scholar 

  48. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184. doi:10.1080/713610925

    Article  CAS  Google Scholar 

  49. Turchini GM, Francis DS, De Silva SS (2006) Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comp Biochem Physiol B: Biochem Mol Biol 144:110–118. doi:10.1016/j.cbpb.2006.01.013

    Article  Google Scholar 

  50. Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499. doi:10.1016/S0044-8486(02)00370-8

    Article  CAS  Google Scholar 

  51. Tocher DR, Fonseca-Madrigal J, Bell JG et al (2002) Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar). Fish Physiol Biochem 26:157–170. doi:10.1023/A:1025416731014

    Article  CAS  Google Scholar 

  52. Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44:203–215. doi:10.1007/s12035-010-8162-0

    Article  CAS  Google Scholar 

  53. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  Google Scholar 

  54. Badiani A, Stipa S, Bitossi F et al (2002) Lipid composition, retention and oxidation in fresh and completely trimmed beef muscles as affected by common culinary practices. Meat Sci 60:169–186. doi:10.1016/S0309-1740(01)00119-X

    Article  CAS  Google Scholar 

  55. Andrés S, Morán L, Aldai N et al (2014) Effects of linseed and quercetin added to the diet of fattening lambs on the fatty acid profile and lipid antioxidant status of meat samples. Meat Sci 97:156–163. doi:10.1016/j.meatsci.2014.02.001

    Article  Google Scholar 

  56. Salvatori G, Filetti F, Di Cesare C et al (2008) Lipid composition of meat and backfat from Casertana purebred and crossbred pigs reared outdoors. Meat Sci 80:623–631. doi:10.1016/j.meatsci.2008.02.013

    Article  CAS  Google Scholar 

  57. Fernandes CE, da Vasconcelos MAS, de Almeida Ribeiro M et al (2014) Nutritional and lipid profiles in marine fish species from Brazil. Food Chem 160:67–71. doi:10.1016/j.foodchem.2014.03.055

    Article  CAS  Google Scholar 

  58. Pirini M, Testi S, Ventrella V et al (2010) Blue-back fish: fatty acid profile in selected seasons and retention upon baking. Food Chem 123:306–314. doi:10.1016/j.foodchem.2010.04.036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support and fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hevelyse Munise Celestino dos Santos.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, H.M.C., Nishiyama, M.F., Bonafe, E.G. et al. Influence of a Diet Enriched with Perilla Seed Bran on the Composition of Omega-3 Fatty Acid in Nile Tilapia. J Am Oil Chem Soc 91, 1939–1948 (2014). https://doi.org/10.1007/s11746-014-2545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2545-8

Keywords

Navigation