Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350
Article
CAS
Google Scholar
Schröder M, Vetter W (2013) Detection of 430 fatty acid methyl esters from a transesterified butter sample. J Am Oil Chem Soc 90:771–790
Article
Google Scholar
Jensen RG, Diemair W, Heinmann W, Kiermann F, Schormüller J, Souci SW, der Handbuch Lebensmittelchemie (1968) Band 3/1 Tierische Lebensmittel. Springer, Berlin, pp 37–38
Google Scholar
Winkler K, Steinhart H (2001) Identification of conjugated isomers of linolenic acid and arachidonic acid in cheese. J Sep Sci 24:663–668
Article
CAS
Google Scholar
Kraft J, Collomb M, Möckel P, Sieber R, Jahreis G (2003) Differences in CLA isomer distribution of cow’s milk lipids. Lipids 38:657–664
Article
CAS
Google Scholar
Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585
Article
CAS
Google Scholar
Odegaard AO, Pereira MA (2006) trans-Fatty acids, insulin resistance, and type 2 diabetes. Nutr Rev 64:364–372
Article
Google Scholar
Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T (2004) Effect of branched-chain fatty acid on fatty acids biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol 50:137–143
Article
CAS
Google Scholar
Thurnhofer S, Lehnert K, Vetter W (2008) Exclusive quantification of methyl branched fatty acids and minor 18:1-isomers in foodstuff by GC/MS in the SIM mode using 10,11-dichloroundecanoic acid and fatty acid ethyl esters as internal standards. Eur Food Res Technol 226:975–983
Article
CAS
Google Scholar
Guth H, Grosch W (1992) Furan fatty acids in butter and butter oil. Z Lebensm Unters Forsch 194:360–362
Article
CAS
Google Scholar
Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771
Article
CAS
Google Scholar
Jenske R, Vetter W (2009) Concentrations of medium-chain 2- and 3-hydroxy fatty acids in foodstuffs. Food Chem 114:1122–1129
Article
CAS
Google Scholar
Lough AK (1975) The chemistry and biochemistry of phytanic, pristanic and related acids. Prog Chem Fats Lipids 14(C):1–48
Article
Google Scholar
Schogt JCM, Haverkamp BP (1965) Isolation of 11-cyclohexylundecanoic acid from butter. J Lipid Res 6:466–470
CAS
Google Scholar
Patton S, Kesler EM (1967) Presence and significance of phenyl-substituted fatty acids in bovine rumen contents. J Dairy Sci 50:1505–1508
Article
CAS
Google Scholar
Lipid library, http://lipidlibrary.aocs.org/
Schmidt PC, Holman RT, Soukup VG (1997) 13-Phenyltridencanoic acid in seed lipids of some aroids. Phytochem 45:1173–1175
Article
Google Scholar
Christie WW (2003) 13-Phenyltridec-9-enoic and 15-phenylpentadec-9-enoic acids in Arum maculatum seed oil. Eur J Lipid Sci Technol 105:779–780
Article
CAS
Google Scholar
Meija J, Soukup VG (2004) Phenyl-terminated fatty acids in seeds of various aroids. Phytochemistry 65:2229–2237
Article
CAS
Google Scholar
Saglik S, Alpmar K, Imre S (2002) Fatty acid composition of Dracunculus vulgaris Schott (Araceae) seed oil from Turkey. J Pharm Pharm Sci 5:231–233
CAS
Google Scholar
Rezanka T, Schreiberová O, Cejková A, Sigler K (2011) The genus Dracunculus—a source of triacylglycerols containing odd-numbered ω-phenyl fatty acids. Phytochem 72:1914–1926
Article
CAS
Google Scholar
Pupo MT, Vieira PC, Fernandes JB, Da Silva MFDGF (1996) A cycloartane triterpenoid and ω-phenyl alkanoic and alkenoic acids from Trichilia claussenii. Phytochem 42:795–798
Article
CAS
Google Scholar
Carballeira NM, Sostre A, Stefanov K, Popov S, Kujumigiev A, Dimitrova-Konaklieva S, Tosteson CG, Tosteson TR (1997) The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexanedecenoic acid. Lipids 32:1271–1275
Article
CAS
Google Scholar
Eisenhauer RA, Beal RE, Black IT, Friedrich IP (1996) Cyclic fatty acids removal of aromatic acids formed during hydrogenation. J Am Oil Chem Soc 43:515–518
Article
Google Scholar
Coenen JWE, Wieske T, Cross RS, Rinke H (1967) Occurrence, detection, during hydrogenation and prevention of cyclization of fatty oils. J Am Oil Chem Soc 43:344–349
Article
Google Scholar
Zeman A, Scharmann H, Eckert WR (1969) Strukturaufklärung cyclischer Fettsäuremethylester I: massenspektrometrie von ω-(o-Alkylphenyl)alkancarbonsäure-methylestern. Fette Seifen Anstrichm 71:283–288
Article
CAS
Google Scholar
Scharmann H, Eckert WR, Zeman A (1969) Strukturaufklärung cyclischer Fettsäure-methylester I: zusammensetzung von Gemischen aromatischer Fettsäure-methylester aus den Cyclisierungs- und Aromatisierungsprodukten von Leinöl- und Holzöl-Fettsäure-methylestern, Linolsäure und Linolsäure-methylester. Fette Seifen Anstrichm 71:118–121
Article
CAS
Google Scholar
Campra-Madrid P, Guil-Guerrero JL (2002) High-performance liquid chromatographic purification of gamma-linolenic acid (GLA) from the seed oil of two Boraginaceae species. Chromatographia 56:673–677
Article
CAS
Google Scholar
Thurnhofer S, Hottinger G, Vetter W (2007) Enantioselective determination of anteiso fatty acids in food samples. Anal Chem 79:4696–4701
Article
CAS
Google Scholar
Kapp T, Vetter W (2009) Offline coupling of high-speed countercurrent chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components. J Chromatogr A 1216:8391–9397
Article
CAS
Google Scholar
Thurnhofer S, Vetter W (2006) Application of ethyl esters and d
3
-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. J Agric Food Chem 54:3209–3214
Article
CAS
Google Scholar
Hauff S, Vetter W (2010) Exploring the fatty acids of Vernix Caseosa in form of their methyl esters by off-line coupling of non-aqueous RP-HPLC and GC/EI-MS. J Chromatogr A 1217:8270–8278
Article
CAS
Google Scholar
Budzikiewicz H, Schäfer M (2005) Massenspektrometrie. Eine Einführung, Wiley-VCH
Google Scholar
Thurnhofer S, Vetter W (2005) A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J Agric Food Chem 53:8896–8903
Article
CAS
Google Scholar
Turlin E, Perrotte-piquemal M, Danchin A, Biville F (2001) Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. J Mol Microbiol Biotechnol 3:127–133
CAS
Google Scholar
Narayana K, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna P (2007) Biological activity of phenylpropionic acid from a terrestrial Streptomycetes. Pol J Microbiol 56:191–197
CAS
Google Scholar
Martin AK (1982) The origin of urinary aromatic compounds excreted by ruminants. 1. The metabolism of quinic, cyclohexanecarboxylic and non-phenolic aromatic acids to benzoic acids. Br J Nutr 47:139–154
Article
CAS
Google Scholar
Marvin H, Krechting C, Van Loo E, Snijders C, Lommen A, Dolstra O (1996) Relationship between phenolic acids formed during rumen degradation of maize of samples and in vitro digestibility. J Sci Food Agric 71:111–118
Article
CAS
Google Scholar
Hutchinson RB, Alexander JC (1963) The structure of a cyclic C18 acid from heated linseed oil. J Org Chem 28:2522
Article
Google Scholar
Eckert WR (1968) Bestimmung aromatischer Fettsäuren in hydrierten cyclischen Fettsäuren. Fette Seifen Anstrichm 70:329–331
Article
CAS
Google Scholar
Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiol 148:1407–1412
CAS
Google Scholar
German Ministry of Nutrition and Agriculture; statistics and reports (2012) http://berichte.bmelv-statistik.de/DFT-9100080-0000.pdf (in German)
Arnold C, Jahreis G (2011) Milchfett und Gesundheit. Ern Umsch 58:177–181
CAS
Google Scholar
Liu L, Shack S, Stetler-Stevenson WG, Hudgins WR, Samid D (1994) Differentiation of cultured human melanoma cells induced by the aromatic fatty acids phenylacetate and phenylbutyrate. J Invest Dermatol 103:335–340
Article
CAS
Google Scholar
Miller AC, Whittaker T, Thibault A, Samid D (1997) Modulation of radiation response of human tumour cells by the differentiation inducers, phenylacetate and phenylbutyrate. Int J Radiat Biol 22:211–218
Google Scholar
Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH (2000) Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Canc Res 6:681–692
CAS
Google Scholar
James MO, Smith RL, Williams RT, Reidenberg FRS, Reidenberg M (1972) The conjugation of phenylacetic acid in human, sub-human primates and some non primate species. Proc R Soc Lond B 182:25–35
Article
CAS
Google Scholar
Hudgins WR, Shack S, Myers CE, Samid D (1995) Cytostatic activity of phenylacetate and derivatives against tumor cells correlation with lipophilicity and inhibition of protein prenylation. Biochem Pharmacol 50:1273–1279
Article
CAS
Google Scholar
American Chemical Society (1966) Aromatic fatty acids marketed. Chem Eng News 44:21
Google Scholar