Advertisement

Journal of the American Oil Chemists' Society

, Volume 91, Issue 10, pp 1695–1702 | Cite as

Identification of Aromatic Fatty Acids in Butter Fat

  • Markus Schröder
  • Halima Abdurahman
  • Tanja Ruoff
  • Katja Lehnert
  • Walter VetterEmail author
Original Paper

Abstract

Bovine milk fat contains a large variety of structurally different fatty acids. In this study, we describe the presence of aromatic fatty acids in a butter fat sample. Fatty acids were released from butter fat and converted into the corresponding methyl esters (FAME). Urea complexation was used to separate the main saturated fatty acids. GC/MS screening of the FAME in the filtrate of the urea complexation indicated the presence of aromatic fatty acids. By (1) conversion of two representatives into picolinyl esters which were analyzed by GC/MS, (2) linear log tR over carbon number plots (R 2 = 0.95) and by the use of two reference standards we were able to show that the phenyl unit was located on the terminal carbon of the straight acyl chain of the FAME. In a fraction gathered by countercurrent chromatography we were able to identify 3-phenylpropionic acid (Ph-3:0), 4-phenylbutyric acid (Ph-4:0), 5-phenylpentanoic acid (Ph-5:0), 6-phenylhexanoic acid (Ph-6:0), 7-phenylheptanoic acid (Ph-7:0), 8-phenyloctanoic acid (Ph-8:0), 9-phenylnonanoic acid (Ph-9:0), 10-phenyldecanoic acid (Ph-10:0), 11-phenylundecanoic acid (Ph-11:0), 12-phenyldodecanoic acid (Ph-12:0), 13-phenyltridecanoic acid (Ph-13:0), along with one unsaturated phenyldecenoic acid (Ph-10:1) isomer. Preliminary results indicate that the aromatic fatty acids may have been formed exogenously in the rumen of the cows. The total amount of the aromatic fatty acids was estimated at 0.15 mg/g butter fat, which corresponds with an average daily intake of ~5 mg per day in Germany and ~4.4 mg per day in Europe.

Keywords

Cow’s milk Fatty acid Aromatic fatty acid N-phenyl-terminated fatty acid 

Abbreviations

CLA

Conjugated linoleic fatty acid

FAME

Fatty acid methyl ester(s)

GC/MS

Gas chromatography with mass spectrometry

m/z

Mass-to-charge ratio

Ph-2:0

2-Phenylacetic acid

Ph-3:0

3-Phenylpropionic acid

Ph-4:0

4-Phenylbutyric acid

Ph-5:0

5-Phenylpentanoic acid

Ph-6:0

6-Phenylhexanoic acid

Ph-7:0

7-Phenylheptanoic acid

Ph-8:0

8-Phenyloctanoic acid

Ph-9:0

9-Phenylnonanoic acid

Ph-10:0

10-Phenyldecanoic acid

Ph-10:1

10-Phenyldecenoic acid

Ph-11:0

11-Phenylundecanoic acid

Ph-12:0

12-Phenyldodecanoic acid

Ph-13:0

13-Phenyltridecanoic acid

Ph-13:1

13-Phenyltridecenoic acid

Ph-14:0

14-Phenyltetradecanoic acid

Ph-15:0

15-Phenylpentadecanoic acid

Ph-15:1

15-Phenylpentadecenoic acid

Ph-18:0

18-Phenyloctadecanoic acid

SIM

Selected ion monitoring

tR

Retention time

u

Atom mass unit

References

  1. 1.
    Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350CrossRefGoogle Scholar
  2. 2.
    Schröder M, Vetter W (2013) Detection of 430 fatty acid methyl esters from a transesterified butter sample. J Am Oil Chem Soc 90:771–790CrossRefGoogle Scholar
  3. 3.
    Jensen RG, Diemair W, Heinmann W, Kiermann F, Schormüller J, Souci SW, der Handbuch Lebensmittelchemie (1968) Band 3/1 Tierische Lebensmittel. Springer, Berlin, pp 37–38Google Scholar
  4. 4.
    Winkler K, Steinhart H (2001) Identification of conjugated isomers of linolenic acid and arachidonic acid in cheese. J Sep Sci 24:663–668CrossRefGoogle Scholar
  5. 5.
    Kraft J, Collomb M, Möckel P, Sieber R, Jahreis G (2003) Differences in CLA isomer distribution of cow’s milk lipids. Lipids 38:657–664CrossRefGoogle Scholar
  6. 6.
    Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585CrossRefGoogle Scholar
  7. 7.
    Odegaard AO, Pereira MA (2006) trans-Fatty acids, insulin resistance, and type 2 diabetes. Nutr Rev 64:364–372CrossRefGoogle Scholar
  8. 8.
    Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T (2004) Effect of branched-chain fatty acid on fatty acids biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol 50:137–143CrossRefGoogle Scholar
  9. 9.
    Thurnhofer S, Lehnert K, Vetter W (2008) Exclusive quantification of methyl branched fatty acids and minor 18:1-isomers in foodstuff by GC/MS in the SIM mode using 10,11-dichloroundecanoic acid and fatty acid ethyl esters as internal standards. Eur Food Res Technol 226:975–983CrossRefGoogle Scholar
  10. 10.
    Guth H, Grosch W (1992) Furan fatty acids in butter and butter oil. Z Lebensm Unters Forsch 194:360–362CrossRefGoogle Scholar
  11. 11.
    Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771CrossRefGoogle Scholar
  12. 12.
    Jenske R, Vetter W (2009) Concentrations of medium-chain 2- and 3-hydroxy fatty acids in foodstuffs. Food Chem 114:1122–1129CrossRefGoogle Scholar
  13. 13.
    Lough AK (1975) The chemistry and biochemistry of phytanic, pristanic and related acids. Prog Chem Fats Lipids 14(C):1–48CrossRefGoogle Scholar
  14. 14.
    Schogt JCM, Haverkamp BP (1965) Isolation of 11-cyclohexylundecanoic acid from butter. J Lipid Res 6:466–470Google Scholar
  15. 15.
    Patton S, Kesler EM (1967) Presence and significance of phenyl-substituted fatty acids in bovine rumen contents. J Dairy Sci 50:1505–1508CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Schmidt PC, Holman RT, Soukup VG (1997) 13-Phenyltridencanoic acid in seed lipids of some aroids. Phytochem 45:1173–1175CrossRefGoogle Scholar
  18. 18.
    Christie WW (2003) 13-Phenyltridec-9-enoic and 15-phenylpentadec-9-enoic acids in Arum maculatum seed oil. Eur J Lipid Sci Technol 105:779–780CrossRefGoogle Scholar
  19. 19.
    Meija J, Soukup VG (2004) Phenyl-terminated fatty acids in seeds of various aroids. Phytochemistry 65:2229–2237CrossRefGoogle Scholar
  20. 20.
    Saglik S, Alpmar K, Imre S (2002) Fatty acid composition of Dracunculus vulgaris Schott (Araceae) seed oil from Turkey. J Pharm Pharm Sci 5:231–233Google Scholar
  21. 21.
    Rezanka T, Schreiberová O, Cejková A, Sigler K (2011) The genus Dracunculus—a source of triacylglycerols containing odd-numbered ω-phenyl fatty acids. Phytochem 72:1914–1926CrossRefGoogle Scholar
  22. 22.
    Pupo MT, Vieira PC, Fernandes JB, Da Silva MFDGF (1996) A cycloartane triterpenoid and ω-phenyl alkanoic and alkenoic acids from Trichilia claussenii. Phytochem 42:795–798CrossRefGoogle Scholar
  23. 23.
    Carballeira NM, Sostre A, Stefanov K, Popov S, Kujumigiev A, Dimitrova-Konaklieva S, Tosteson CG, Tosteson TR (1997) The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexanedecenoic acid. Lipids 32:1271–1275CrossRefGoogle Scholar
  24. 24.
    Eisenhauer RA, Beal RE, Black IT, Friedrich IP (1996) Cyclic fatty acids removal of aromatic acids formed during hydrogenation. J Am Oil Chem Soc 43:515–518CrossRefGoogle Scholar
  25. 25.
    Coenen JWE, Wieske T, Cross RS, Rinke H (1967) Occurrence, detection, during hydrogenation and prevention of cyclization of fatty oils. J Am Oil Chem Soc 43:344–349CrossRefGoogle Scholar
  26. 26.
    Zeman A, Scharmann H, Eckert WR (1969) Strukturaufklärung cyclischer Fettsäuremethylester I: massenspektrometrie von ω-(o-Alkylphenyl)alkancarbonsäure-methylestern. Fette Seifen Anstrichm 71:283–288CrossRefGoogle Scholar
  27. 27.
    Scharmann H, Eckert WR, Zeman A (1969) Strukturaufklärung cyclischer Fettsäure-methylester I: zusammensetzung von Gemischen aromatischer Fettsäure-methylester aus den Cyclisierungs- und Aromatisierungsprodukten von Leinöl- und Holzöl-Fettsäure-methylestern, Linolsäure und Linolsäure-methylester. Fette Seifen Anstrichm 71:118–121CrossRefGoogle Scholar
  28. 28.
    Campra-Madrid P, Guil-Guerrero JL (2002) High-performance liquid chromatographic purification of gamma-linolenic acid (GLA) from the seed oil of two Boraginaceae species. Chromatographia 56:673–677CrossRefGoogle Scholar
  29. 29.
    Thurnhofer S, Hottinger G, Vetter W (2007) Enantioselective determination of anteiso fatty acids in food samples. Anal Chem 79:4696–4701CrossRefGoogle Scholar
  30. 30.
    Kapp T, Vetter W (2009) Offline coupling of high-speed countercurrent chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components. J Chromatogr A 1216:8391–9397CrossRefGoogle Scholar
  31. 31.
    Thurnhofer S, Vetter W (2006) Application of ethyl esters and d 3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. J Agric Food Chem 54:3209–3214CrossRefGoogle Scholar
  32. 32.
    Hauff S, Vetter W (2010) Exploring the fatty acids of Vernix Caseosa in form of their methyl esters by off-line coupling of non-aqueous RP-HPLC and GC/EI-MS. J Chromatogr A 1217:8270–8278CrossRefGoogle Scholar
  33. 33.
    Budzikiewicz H, Schäfer M (2005) Massenspektrometrie. Eine Einführung, Wiley-VCHGoogle Scholar
  34. 34.
    Thurnhofer S, Vetter W (2005) A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J Agric Food Chem 53:8896–8903CrossRefGoogle Scholar
  35. 35.
    Turlin E, Perrotte-piquemal M, Danchin A, Biville F (2001) Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. J Mol Microbiol Biotechnol 3:127–133Google Scholar
  36. 36.
    Narayana K, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna P (2007) Biological activity of phenylpropionic acid from a terrestrial Streptomycetes. Pol J Microbiol 56:191–197Google Scholar
  37. 37.
    Martin AK (1982) The origin of urinary aromatic compounds excreted by ruminants. 1. The metabolism of quinic, cyclohexanecarboxylic and non-phenolic aromatic acids to benzoic acids. Br J Nutr 47:139–154CrossRefGoogle Scholar
  38. 38.
    Marvin H, Krechting C, Van Loo E, Snijders C, Lommen A, Dolstra O (1996) Relationship between phenolic acids formed during rumen degradation of maize of samples and in vitro digestibility. J Sci Food Agric 71:111–118CrossRefGoogle Scholar
  39. 39.
    Hutchinson RB, Alexander JC (1963) The structure of a cyclic C18 acid from heated linseed oil. J Org Chem 28:2522CrossRefGoogle Scholar
  40. 40.
    Eckert WR (1968) Bestimmung aromatischer Fettsäuren in hydrierten cyclischen Fettsäuren. Fette Seifen Anstrichm 70:329–331CrossRefGoogle Scholar
  41. 41.
    Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiol 148:1407–1412Google Scholar
  42. 42.
    German Ministry of Nutrition and Agriculture; statistics and reports (2012) http://berichte.bmelv-statistik.de/DFT-9100080-0000.pdf (in German)
  43. 43.
    Arnold C, Jahreis G (2011) Milchfett und Gesundheit. Ern Umsch 58:177–181Google Scholar
  44. 44.
    Liu L, Shack S, Stetler-Stevenson WG, Hudgins WR, Samid D (1994) Differentiation of cultured human melanoma cells induced by the aromatic fatty acids phenylacetate and phenylbutyrate. J Invest Dermatol 103:335–340CrossRefGoogle Scholar
  45. 45.
    Miller AC, Whittaker T, Thibault A, Samid D (1997) Modulation of radiation response of human tumour cells by the differentiation inducers, phenylacetate and phenylbutyrate. Int J Radiat Biol 22:211–218Google Scholar
  46. 46.
    Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH (2000) Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Canc Res 6:681–692Google Scholar
  47. 47.
    James MO, Smith RL, Williams RT, Reidenberg FRS, Reidenberg M (1972) The conjugation of phenylacetic acid in human, sub-human primates and some non primate species. Proc R Soc Lond B 182:25–35CrossRefGoogle Scholar
  48. 48.
    Hudgins WR, Shack S, Myers CE, Samid D (1995) Cytostatic activity of phenylacetate and derivatives against tumor cells correlation with lipophilicity and inhibition of protein prenylation. Biochem Pharmacol 50:1273–1279CrossRefGoogle Scholar
  49. 49.
    American Chemical Society (1966) Aromatic fatty acids marketed. Chem Eng News 44:21Google Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Markus Schröder
    • 1
  • Halima Abdurahman
    • 1
  • Tanja Ruoff
    • 1
  • Katja Lehnert
    • 1
  • Walter Vetter
    • 1
    Email author
  1. 1.Institute of Food ChemistryUniversity of HohenheimStuttgartGermany

Personalised recommendations