Advertisement

One-Pot Synthesis of Poly(linoleic acid)-g-Poly(styrene)-g-Poly(ε-caprolactone) Graft Copolymers

  • Abdulkadir Allı
  • Sema Allı
  • C. Remzi Becer
  • Baki Hazer
Original Paper

Abstract

One-pot synthesis of graft copolymers by ring-opening polymerization and free radical polymerization using polymeric linoleic acid peroxide (PLina) is reported. Graft copolymers having structures of poly(linoleic acid)-g-polystyrene-g-poly(ε-caprolactone) were synthesized from PLina, possessing peroxide groups on the main chain by the combination of free radical polymerization of styrene and ring-opening polymerization of ε-caprolactone in one-step. Principal parameters, such as monomer concentration, initiator concentration, and polymerization time, which effect the one-pot polymerization reactions were evaluated. The obtained graft copolymers were characterized by 1H-NMR and DOSY-NMR spectroscopy, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry techniques.

Keywords

Autoxidation One-pot polymerization ε-Caprolactone Polymeric linoleic acid peroxides 

Notes

Acknowledgments

This work was supported financially by the Turkish Scientific Research Council (Grants Numbers: 110T884, 211T016), the Düzce University Research Fund (Grant Number: 2011.05.HD.026, 2011.05.03.068, 2011.05.HD.052) the Bülent Ecevit University Research Fund (Grant Number: 2012-10-03-03).

Supplementary material

11746_2014_2418_MOESM1_ESM.doc (165 kb)
1H-NMR spectra of PLina, poly(ε-caprolactone) (PCL) (DOC 165 kb)

References

  1. 1.
    Allı S, Allı A, Hazer B (2012) Hyperbranched homo and thermo responsive graft copolymers by using ATRP-macromonomer initiators. J Appl Polym Sci 124:536–548CrossRefGoogle Scholar
  2. 2.
    Savaskan S, Hazer B (1996) Synthesis of a new macromonomeric peroxyinitiator (MMPI) having poly tetrahydrofurane units. Angew Makromol Chem 239:13–26CrossRefGoogle Scholar
  3. 3.
    Hazer B (1996) Poly(β-hydroxy nonanoate) and polystyrene or poly(methyl methacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol Chem Phys 197:431–441CrossRefGoogle Scholar
  4. 4.
    Yildiz U, Hazer B, Tauer K (2012) Tailoring polymer architectures with macromonomer azoinitiators. Polym Chem 3:1107–1118CrossRefGoogle Scholar
  5. 5.
    Bernaerts KV, Du Prez FE (2006) Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog Polym Sci 31:671–722CrossRefGoogle Scholar
  6. 6.
    Hadjichristidis N, Iatrou H, Pispas S, Pistikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A: Polym Chem 38:3211–3234CrossRefGoogle Scholar
  7. 7.
    Grubbs RT, Tumas W (1989) Polym Synth Organotransition Metal Chem Sci 243:907–915Google Scholar
  8. 8.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746CrossRefGoogle Scholar
  9. 9.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  10. 10.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688CrossRefGoogle Scholar
  11. 11.
    Keleş E, Hazer B (2009) Synthesis of segmented polyurethane based on polymeric soybean oil polyol and poly(ethylene glycol). J Polym Environ 17:153–158CrossRefGoogle Scholar
  12. 12.
    Çakmakli B, Hazer B, Tekin İÖ, Cömert FB (2005) Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers. Biomacromolecules 6:1750–1758CrossRefGoogle Scholar
  13. 13.
    Ilter S, Hazer B, Borcakli M, Atici O (2001) Graft copolymerization of methyl methacrylate onto a bacterial polyester containing unsaturated side chains. Macromol Chem Phys 202:2281–2286CrossRefGoogle Scholar
  14. 14.
    Hazer B, Demirel Sİ, Borcakli M, Eroglu MS, Cakmak M, Erman B (2001) Free radical crosslinking of unsaturated bacterial polyesters obtained from soybean oily acids. Polym Bull 46:389–394CrossRefGoogle Scholar
  15. 15.
    Hazer B, Hazer DB, Çoban B (2010) Synthesis of microbial elastomers based on soybean oil. Autoxidation kinetics, thermal and mechanical properties. J Polym Res 17:567–577CrossRefGoogle Scholar
  16. 16.
    Tallman KA, Pratt DA, Porter NA (2001) Kinetic products of linoleate peroxidation: rapid beta-fragmentation of nonconjugated peroxyls. J Am Chem Soc 123:11827–11828CrossRefGoogle Scholar
  17. 17.
    Weenen H, Porter NA (1982) Autoxidation of model membrane systems-co-oxidation of poly-unsaturated lecithins with steroids, fatty-acids, and alpha-tocopherol. J Am Chem Soc 104:5216–5221CrossRefGoogle Scholar
  18. 18.
    Wold CR, Ni H, Soucek MD (2001) Model reaction study on the interaction between the inorganic and organic phases in drying oil based ceramer coatings. Chem Mater 13:3032–3037CrossRefGoogle Scholar
  19. 19.
    Cakmakli B, Hazer B, Tekin İO, Comert FB (2005) Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers: biocompatibility and bacterial adhesion. Biomacromolecules 6:1750–1758CrossRefGoogle Scholar
  20. 20.
    Cakmakli B, Hazer B, Tekin İÖ, Acikgoz S, Can M (2007) PMMA-multigraft copolymers derived from linseed oil, soybean oil, and linoleic acid: protein adsorption and bacterial adherence. J Am Oil Chem Soc 84:73–81CrossRefGoogle Scholar
  21. 21.
    Cakmakli B, Hazer B, Tekin İÖ, Kizgut S, Koksal M, Menceloglu Y (2004) Synthesis and characterization of polymeric linseed oil grafted methyl methacrylate or styrene. Macromol Biosci 4:649–655CrossRefGoogle Scholar
  22. 22.
    Allı A, Hazer B (2008) Poly(N-isopropylacrylamide) thermoresponsive cross-linked conjugates containing polymeric soybean oil and/or polypropylene glycol. Eur Polym J 44:1701–1713CrossRefGoogle Scholar
  23. 23.
    Allı A, Hazer B (2011) Synthesis and characterization of poly(N-isopropyl acryl amide)-g-poly(linoleic acid)/poly(linolenic acid) graft copolymers. J Am Oil Chem Soc 88:255–263CrossRefGoogle Scholar
  24. 24.
    Öztürk T, Göktaş M, Hazer B (2010) One-step synthesis of triarm block copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization. J Appl Polym Sci 117:1638–1645Google Scholar
  25. 25.
    Schmid C, Falkenhagen J, Barner-Kowollik CJ (2011) An efficient avenue to poly(styrene)-block-poly(epsilon-caprolactone) polymers via switching from RAFT to hydroxyl functionality: synthesis and characterization. Polym Sci Part A Polym Chem 49:1–10CrossRefGoogle Scholar
  26. 26.
    Yu YC, Li G, Kang HU, Youk JU (2012) One-step synthesis of poly(alkyl methacrylate)-b-polyester block copolymers via a dual initiator route combining RAFT polymerization and ROP. Coll Polym Sci 290:1707–1712CrossRefGoogle Scholar
  27. 27.
    Le Hellaye M, Lefay C, Davis TP, Stenzel MH, Barner-Kowollik CJ (2008) Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. J Polym Sci Part A: Polym Chem 46:3058–3067CrossRefGoogle Scholar
  28. 28.
    Hong J, Wang Q, Fan Z (2006) Synthesis of multiblock polymer containing narrow polydispersity blocks. Macromol Rapid Commun 27:57–62CrossRefGoogle Scholar
  29. 29.
    Cheng C, Khoshdel E, Wooley KL (2007) One-pot tandem synthesis of a core: shell brush copolymer from small molecule reactants by ring-opening metathesis and reversible addition-fragmentation chain transfer (co)polymerizations. Macromolecules 4:2289–2292CrossRefGoogle Scholar
  30. 30.
    Mahanthappa MK, Bates FS, Hillmyer MA (2005) Synthesis of ABA triblock copolymers by a tandem ROMP-RAFT strategy. Macromolecules 38:7890–7894CrossRefGoogle Scholar
  31. 31.
    Mori H, Masuda S, Endo T (2008) Ring-opening copolymerization of 10-methylene-9,10-dihydroanthryl-9-spirophenylcyclopropane via free radical and RAFT processes. Macromolecules 41:632–639CrossRefGoogle Scholar
  32. 32.
    Han DH, Pan CY (2007) Preparation and characterization of heteroarm H-shaped terpolymers by combination of reversible addition-fragmentation transfer polymerization and ring-opening polymerization. J Polym Sci Part A: Polym Chem 45:789–799CrossRefGoogle Scholar
  33. 33.
    Xu XQ, Jia ZF, Sun RM, Huang JL (2006) Synthesis of well-defined, brush-type, amphiphilic [poly(styrene-co-2-hydroxyethyl methacrylate)-graft-poly(epsilon-caprolactone)]-b-poly(ethylene oxide)-b-[poly(styrene-co-2-hydroxyethyl methacrylate)-graft-poly(epsilon-caprolactone)] and its aggregation behavior in aqueous media. J Polym Sci Part A: Polym Chem 44:4396–4408CrossRefGoogle Scholar
  34. 34.
    Xu XW, Huang JL (2006) Synthesis and characterization of amphiphilic copolymer of linear poly(ethylene oxide) linked with [poly(styrene-co-2-hydroxyethyl methacrylate)graft-poly(epsilon-caprolactone)] using sequential controlled polymerization. J Polym Sci Part A: Polym Chem 44:467–476CrossRefGoogle Scholar
  35. 35.
    Liu J, Pan CY (2005) Synthesis and characterization of H-shaped copolymers by combination of RAFT polymerization and CROP. Polymer 46:11133–11141CrossRefGoogle Scholar
  36. 36.
    Wang WP, You YZ, Hong CY, Xu J, Pan CY (2005) Synthesis of comb-shaped copolymers by combination of reversible addition-fragmentation chain transfer polymerization and cationic ring-opening polymerization. Polymer 46:9489–9494CrossRefGoogle Scholar
  37. 37.
    Shi PJ, Li YG, Pan CY (2004) Block and star block copolymers by mechanism transformation: X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(l-lactide) ABC miktoarm star copolymers of by combination of RAFT and ROP. Eur Polym J 40:1283–1290CrossRefGoogle Scholar
  38. 38.
    You Y, Hong C, Wang W, Lu W, Pan CY (2004) Preparation and characterization of thermally responsive and biodegradable block copolymer comprised of PNIPAAM and PLA by combination of ROP and RAFT methods. Macromolecules 37:9761–9797CrossRefGoogle Scholar
  39. 39.
    Chang C, Wei H, Quan CY, Li YY, Liu J, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2008) Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci Part A Polym Chem 46:3048–3057CrossRefGoogle Scholar
  40. 40.
    Luan B, Zhang BQ, Pan CY (2006) Synthesis and characterizations of well-defined branched polymers with AB(2) branches by combination of RAFT polymerization and ROP as well as ATRP. J Polym Sci Part A: Polym Chem 44:549–560CrossRefGoogle Scholar
  41. 41.
    Li YG, Wang YM, Pan CY (2003) Block and star block copolymers by mechanism transformation 9: preparation and characterization of poly(methyl methacrylate)/poly(1,3-dioxepane)/polystyrene ABC miktoarm star copolymers by combination of reversible addition-fragmentation chain-transfer polymerization and cationic ring-opening polymerization. J Polym Sci Part A: Polym Chem 41:1243–1250CrossRefGoogle Scholar
  42. 42.
    Huang CF, Kuo SW, Lee HF, Chang FC (2005) A new strategy for the one-step synthesis of block copolymers through simultaneous free radical and ring opening polymerizations using a dual-functional initiator. Polymer 46:1561–1565CrossRefGoogle Scholar
  43. 43.
    Sogah DY, Di J (2006) Exfoliated block copolymer/silicate nanocomposites by one-pot, one-step in situ living polymerization from silicate-anchored multifunctional initiator. Macromolecules 39:5052–5057CrossRefGoogle Scholar
  44. 44.
    Benoit D, Hawker CJ, Huang EE, Lin Z, Russel TP (2000) One-step formation of functionalized block copolymers. Macromolecules 33:1505–1507CrossRefGoogle Scholar
  45. 45.
    Geus MD, Schormans L, Palmans ARA, Koning CE, Heise A (2006) Block copolymers by chemoenzymatic cascade polymerization: a comparison of consecutive and simultaneous reactions. J Polym Sci Part A: Polym Chem 44:4290–4297CrossRefGoogle Scholar
  46. 46.
    Öztürk T, Cakmak İ (2008) One-step synthesis of multiphase block copolymers via simultaneous free radical and ring opening polymerization using poly(ethylene oxide) possessing azo group. J Macromol Sci Part A Pure and Appl Chem 45:572–577CrossRefGoogle Scholar
  47. 47.
    Hazer B, Baysal BM (1986) Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer 27:961–968CrossRefGoogle Scholar
  48. 48.
    Hazer B, Besirli N, Ayas A, Baysal BM (1989) Preparation of ABCBA-type block copolymers by use of macro-initiators containing peroxy and azo groups. Makromol Chem Phys 190:1987–1996CrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Abdulkadir Allı
    • 1
  • Sema Allı
    • 1
    • 2
  • C. Remzi Becer
    • 3
  • Baki Hazer
    • 2
  1. 1.Department of ChemistryDüzce UniversityDüzceTurkey
  2. 2.Department of ChemistryBülent Ecevit UniversityZonguldakTurkey
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations