Journal of the American Oil Chemists' Society

, Volume 90, Issue 2, pp 191–198 | Cite as

Thermal Degradation Kinetics of Carotenoids in Palm Oil

  • Klicia A. Sampaio
  • Jose V. Ayala
  • Simone M. Silva
  • Roberta Ceriani
  • Roland Verhé
  • Antonio J. A. Meirelles
Original Paper

Abstract

In the present work, a detailed study is performed for carotene thermal degradation in palm oil at four temperatures ranging from 170 to 230 °C. The heating process was carried out with injection of nitrogen, and the samples were collected every 20 min during a total heating period of 140 min. HPLC analysis was conducted to monitor the carotenoids and tocols variations over the heating time at each temperature. The experimental data were then compared to literature data concerning carotenoids thermal degradation. The thermal degradation kinetics of carotenoids in palm oil followed an order superior to 1. The dependence of constant rates with temperature obeyed the Arrhenius relationship. The activation energy for the carotenoids thermal degradation in palm oil was found to be 109.4 kJ/mol.

Keywords

Carotenes Activation energy Reaction order Palm oil Vegetable oils 

References

  1. 1.
    Mayamol PN, Balachandran C, Samuel T, Sundaresan A, Arumughan C (2007) Process technology for the production of micronutrient rich red palm olein. J Am Oil Chem Soc 84:587–596CrossRefGoogle Scholar
  2. 2.
    Edem DO (2002) Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review. Plant Foods Hum Nutr 57:319–341CrossRefGoogle Scholar
  3. 3.
    Henry LK, Catignani GL, Schwartz SJ (1998) Oxidative degradation kinetics of lycopene, lutein and 9-cis and all-trans β-carotene. J Am Oil Chem Soc 75:823–829CrossRefGoogle Scholar
  4. 4.
    Dhuique-Mayer C, Tbatou M, Carail M, Caris-Verat C, Dornier M, Amiot MJ (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. J Agric Food Chem 55:4209–4216CrossRefGoogle Scholar
  5. 5.
    Koca N, Burdurlu HS, Karadeniz F (2007) Kinetics of colour changes in dehydrated carrots. J Food Eng 78:449–455CrossRefGoogle Scholar
  6. 6.
    Basiron Y, Oil Palm (2005) In: Shadidi F (ed) Bailey’s industrial oil & fat products: edible oils, 6th edn. Wiley, Hoboken, pp 374–380Google Scholar
  7. 7.
    Achir N, Randrianatoandro VA, Bohoun P, Laffargue A, Avallone S (2010) Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol 112:349–361Google Scholar
  8. 8.
    Jideani VAE (1992) Carotene retention in palm oil by mechanized and traditional process. J Food Sci Technol 29:68–69Google Scholar
  9. 9.
    Loncin M (1962) Palmöl und seine verarbeitung fur die margarine-insdustrie. Fett WissTechnol 64:531–536Google Scholar
  10. 10.
    Silva SM, Sampaio KA, Taham T, Rocco SA, Ceriani R, Meirelles AJA (2009) Characterization of oil extracted from buriti fruit (mauritia flexuosa) grown in the brazilian amazon region. J Am Oil Chem Soc 86:611–616CrossRefGoogle Scholar
  11. 11.
    Oneywu PN, Ho C-T, Daun H (1986) Characterization of β-carotene thermal degradation products in a model food systems. J Am Oil Chem Soc 63:1437–1441CrossRefGoogle Scholar
  12. 12.
    Okiy DA, Oke OL (1986) Some chemical changes in heated crude palm oil. Food Chem 21:161–166CrossRefGoogle Scholar
  13. 13.
    Wan Nik WB, Ani FN, Masjuki HH (2005) Thermal stability evaluation of palm oil as energy transport media. Energ Convers Manag 46:2198–2215CrossRefGoogle Scholar
  14. 14.
    Fogler SH (1999) Elements of chemical reaction engineering, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  15. 15.
    Sampaio KA, Ceriani R, Silva SM, Taham T, Meirelles AJA (2011) Steam deacidification of palm oil. Food Bioprod Process 89:383–390CrossRefGoogle Scholar
  16. 16.
    Li Z-L, Wu L-M, Ma L-P, Liu Y-C, Liu Z–L (1995) Antioxidants synergism and mutual protection of α-tocopherol and β-carotene in the inhibition of radical-initiated peroxidation of linoleic acid in solution. J Phys Org Chem 8:774–780CrossRefGoogle Scholar
  17. 17.
    Takahashi A, Shibasaki-Kitakawa N, Kato H, Yonemoto T (2003) A rigorous kinetic model for β-carotene oxidation in the presence of an antioxidant, α-tocopherol. J Am Oil Chem Soc 80:1241–1247CrossRefGoogle Scholar
  18. 18.
    Schroeder MT, Becker EM, Skibsted LH (2006) Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. J Agric Food Chem 54:3445–3453CrossRefGoogle Scholar
  19. 19.
    Shibasaki-Kitakawa N, Kato H, Takahashi A, Yonemoto T (2004) Oxidation kinetics of β-carotene in oleic acid solvent with addition of an antioxidant, α-tocopherol. J Am Oil Chem Soc 81:389–394CrossRefGoogle Scholar
  20. 20.
    Budowski P, Brondi A (1960) Autoxidation of carotene and vitamin A influenced of fat and antioxidants. Arch Biochem Biophys 89:1437–1441CrossRefGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  • Klicia A. Sampaio
    • 1
  • Jose V. Ayala
    • 2
  • Simone M. Silva
    • 1
  • Roberta Ceriani
    • 3
  • Roland Verhé
    • 4
  • Antonio J. A. Meirelles
    • 1
  1. 1.Food Engineering DepartmentUniversity of Campinas (UNICAMP), Cidade Universitária Zeferino VazCampinasBrazil
  2. 2.Desmet Ballestra R&D CenterZaventemBelgium
  3. 3.Faculty of Chemical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  4. 4.Faculty of Bioscience EngineeringGhent University (UGENT)GhentBelgium

Personalised recommendations