Journal of the American Oil Chemists' Society

, Volume 90, Issue 2, pp 167–182 | Cite as

Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances

Review Article

Abstract

Omega-3 fatty acids, namely docosahexaenoic acid and eicosapentaenoic acid, have been linked to several beneficial health effects (i.e. mitigation effects of hypertension, stroke, diabetes, osteoporosis, depression, schizophrenia, asthma, macular degeneration, rheumatoid arthritis, etc.). The main source of omega-3 fatty acids is fish oil; lately however, fish oil market prices have increased significantly. This has prompted a significant amount of research on the use of single-cell oils as a source of omega-3 fatty acids. Some of the microbes reported to produce edible oil that contains omega-3 fatty acids are from the genus Schizochytrium, Thraustochytrium and Ulkenia. An advantage of a single cell oil is that it usually contains a significant amount of natural antioxidants (i.e. carotenoids and tocopherols), which can protect omega-3 fatty acids from oxidation, hence making this oil less prone to oxidation than oils derived from plants and marine animals. Production yields of single cell oils and of omega-3 fatty acids vary with the microbe used, with the fermentative growing conditions, and extractive procedures employed to recover the oil. This paper presents an overview of recent advances, reported within the last 10 years, in the production of single cell oils rich in omega-3 fatty acids.

Keywords

Omega-3 fatty acids Single cell oils Docosahexaenoic acid Eicosapentaenoic acid Fermentation Thraustochytrids Omega-6 fatty acids 

References

  1. 1.
    Covington MB (2004) Omega-3 fatty acids. Am Fam Phys 70:133–140Google Scholar
  2. 2.
    Ho L, van Leeuwen R, Witteman JC, van Duijn CM, Uitterlinden AG, Hofman A, de Jong PT, Vingerling JR, Klaver CC (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids. Arch Ophthalmol 129:758–766CrossRefGoogle Scholar
  3. 3.
    Pase MP, Grima NA, Sarris J (2011) Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr 106:974–980CrossRefGoogle Scholar
  4. 4.
    Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R (2011) Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun 25:1725–1734CrossRefGoogle Scholar
  5. 5.
    Imhoff-Kunsch B, Stein AD, Martorell R, Parra-Cabrera S, Romieu I, Ramakrishnan U (2011) Prenatal docosahexaenoic acid supplementation and infant morbidity: randomized controlled trial. Pediatrics 128:505–512Google Scholar
  6. 6.
    Gray N (2011) Beyond the heart and brain: emerging benefits of omega-3. Available via Internet at http://www.nutraingredients-usa.com/Research/Beyond-the-heart-and-brain-Emerging-benefits-of-omega-3
  7. 7.
    Lewis MD, Hibbeln JR, Johnson JE, Hong Lin Y, Hyun DY, Loewke JD (2011) Suicide deaths of active-duty US military and omega-3 fatty-acid status: a case-control comparison. J Clin Psychiatry 72:1585–1590CrossRefGoogle Scholar
  8. 8.
    Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Tech 102:10–16CrossRefGoogle Scholar
  9. 9.
    Meireles LA, Guedes AC, Malcata FX (2003) Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:50–55CrossRefGoogle Scholar
  10. 10.
    Sakarudani E, Abe T, Shimizu S (2008) Identification of mutation sites on omega-3 desaturase genes from Mortierella alpina IS-4 mutants. J Biosci Bioeng 107:7–9CrossRefGoogle Scholar
  11. 11.
    Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J Am Oil Chem Soc 77:613–617CrossRefGoogle Scholar
  12. 12.
    Liu CP, Lin LP (2005) Morphology and eicosapentaenoic acid production by Monodus subterraneus UTEX 151. Micron 36:545–550CrossRefGoogle Scholar
  13. 13.
    Athayle SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744CrossRefGoogle Scholar
  14. 14.
    Garcia MCC, Miron S, Sevilla JMF, Grima EM, Camacho FG (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305CrossRefGoogle Scholar
  15. 15.
    Wen Z, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22:727–733CrossRefGoogle Scholar
  16. 16.
    Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202CrossRefGoogle Scholar
  17. 17.
    Lian M, Huang H, Ren L, Ji X, Zhu J, Jin L (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Biochem Biotechnol 162:935–941CrossRefGoogle Scholar
  18. 18.
    Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2009) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185CrossRefGoogle Scholar
  19. 19.
    Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 58:817–820CrossRefGoogle Scholar
  20. 20.
    Lee WH, Cho KW, Park SY, Shin KS, Lee DS, Hwang SK, Seo SJ, Kim JM, Ghim SY, Song BH, Lee SH, Kim JG (2008) Identification of psychrophile Shewanella sp. KMG427 as an eicosapentaenoic acid producer. J Microbiol Biotechnol 18:1869–1873Google Scholar
  21. 21.
    Ratledge C (1976) Microbial production of oils and fats. In: Birch GG, Parker KJ, Worgan JT (eds) Food from waste. Applied Science Publishers, London, pp 98–113Google Scholar
  22. 22.
    Ratledge C (2010) Single cell oils for the 21st century. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 3–26Google Scholar
  23. 23.
    Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 75–96Google Scholar
  24. 24.
    Zhu Q, Xue Z, Yadav N, Damude H, Walters-Pollak D, Rupert R, Seip J, Hollerback D, Macool D, Zhang H, Bledsoe S, Short D, Tyerus B, Kinney A, Picataggio S (2010) Metabolic engineering of an oleaginous yeast for the production of omega-3 fatty acids. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 51–71Google Scholar
  25. 25.
    Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169CrossRefGoogle Scholar
  26. 26.
    Armenta RE, Burja A, Radianingtyas H, Barrow CJ (2006) Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the thraustochytrid strain ONC-T18. J Agric Food Chem 54:9752–9758CrossRefGoogle Scholar
  27. 27.
    Scott S, Armenta RE, Berryman K, Norman A (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48:267–272CrossRefGoogle Scholar
  28. 28.
    Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. J Agric Food Chem 55:4795–4801CrossRefGoogle Scholar
  29. 29.
    Porter D (1989) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 388–398Google Scholar
  30. 30.
    Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp., nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res 102:439–448CrossRefGoogle Scholar
  31. 31.
    Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211CrossRefGoogle Scholar
  32. 32.
    Ratledge C (1988) Biochemistry, stoichiometry, substrates and economics. In: Moreton RS (ed) Single cell oil. Longman Scientific & Technical, Harlow, pp 33–70Google Scholar
  33. 33.
    Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205CrossRefGoogle Scholar
  34. 34.
    Jiang Y, Chen F (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. J Am Oil Chem Soc 35:1205–1209Google Scholar
  35. 35.
    Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545CrossRefGoogle Scholar
  36. 36.
    Pyle D, Garcia R, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel derived-crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939CrossRefGoogle Scholar
  37. 37.
    Mendes A, Guerra P, Madeira V, Ruano F, da Silva TL, Reis A (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215CrossRefGoogle Scholar
  38. 38.
    Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n–3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzyme Microbiol Technol 47:24–30CrossRefGoogle Scholar
  39. 39.
    Zhao CH, Zhang T, Li M, Chi ZM (2010) Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 45:1121–1126CrossRefGoogle Scholar
  40. 40.
    Liang Y, Zhao X, Strait M, Wen Z (2012) Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Bioresour Technol. doi:10.1016/j.biortech.2012.02.035 Google Scholar
  41. 41.
    Kumon Y, Yokoyama R, Haque Z, Yokochi T, Honda D, Nakahara T (2006) A new labyrinthulid isolate that produces only docosahexaenoic acid. Mar Biotechnol 8:170–177CrossRefGoogle Scholar
  42. 42.
    Kumon Y, Yokochi T, Nakahara T, Yamaoka M, Mito K (2002) Production of long-chain polyunsaturated fatty acids by monoxenic growth of labyrinthulids on oil-dispersed agar medium. Appl Microbiol Biotechnol 60:275–280CrossRefGoogle Scholar
  43. 43.
    Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, Seo JW (2011) Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. App Biochem Biotechnol 164:1468–1480CrossRefGoogle Scholar
  44. 44.
    Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. App Biochem Biotechnol 165:442–453CrossRefGoogle Scholar
  45. 45.
    Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2010) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108:621–631CrossRefGoogle Scholar
  46. 46.
    Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294CrossRefGoogle Scholar
  47. 47.
    Wen Z, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzym Microb Technol 29:341–347CrossRefGoogle Scholar
  48. 48.
    Hwang BH, Kim JW, Park CY, Park CS, Kim YS, Ryu YW (2005) High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnol Lett 27:731–735CrossRefGoogle Scholar
  49. 49.
    Liang Y, Garcia R, Piazza G, Wen Z (2011) Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare. J Agric Food Chem 59:11990–11996CrossRefGoogle Scholar
  50. 50.
    Chi Z, Lin Y, Frear C, Chen S (2008) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81:1141–1148CrossRefGoogle Scholar
  51. 51.
    Uzuka Y, Naganuma T, Tanaka K, Suzuki K (1985) Relation between neutral lipid-accumulation and the growth-phase in the yeast, Lipomyces starkeyi, a fat producing yeast. Agric Biol Chem 49:851–852CrossRefGoogle Scholar
  52. 52.
    Ratledge C (1981) Yeast and mould as sources of oils and fats. In: Pryde EH, Princen LH, Mukherjee KD (eds) New sources of fats and oils. AOCS Press, Champaign, pp 159–169Google Scholar
  53. 53.
    Wen Z, Jiang Y, Chen F (2002) High cell density of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development. Proc Biochem 37:1447–1453CrossRefGoogle Scholar
  54. 54.
    Wen Z, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28CrossRefGoogle Scholar
  55. 55.
    Barclay W, Weaver C, Metz J (2005) Development of a docosahexaenoic acid production technology suing Schizochytrium: a historical perspective. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Urbana, pp 36–52Google Scholar
  56. 56.
    Waites MJ, Morgan NL, Rockey JS, Higton G (2001) Industrial microbiology: an introduction. Blackwell, OxfordGoogle Scholar
  57. 57.
    Ratledge C, Hall M (1977) Oxygen demand by lipid-accumulating yeast in continuous culture. Appl Environ Microbiol 34:230–231Google Scholar
  58. 58.
    Fakas S, Papanikolau S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioeng 33:573–580CrossRefGoogle Scholar
  59. 59.
    Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183CrossRefGoogle Scholar
  60. 60.
    Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933CrossRefGoogle Scholar
  61. 61.
    Sakuradani E, Shimizu S (2009) Single cell oil production by Mortierella alpina. J Biotechnol 144:31–36CrossRefGoogle Scholar
  62. 62.
    Siegenthaler PA, Belsky MM, Goldstein S (1967) Phosphate uptake in an obligately marine fungus: a specific requirement for sodium. Science 155:93–94CrossRefGoogle Scholar
  63. 63.
    Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640CrossRefGoogle Scholar
  64. 64.
    Hur B, Cho D, Kim H, Park C, Suh H (2002) Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thraustochytrium aureum ATCC 34304. Biotechnol Bioprocess Eng 7:10–15CrossRefGoogle Scholar
  65. 65.
    Wen Z, Chen F (2001) Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 75:159–169CrossRefGoogle Scholar
  66. 66.
    Shabala L, McMeekin T, Shabala S (2009) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843CrossRefGoogle Scholar
  67. 67.
    Chen G, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616CrossRefGoogle Scholar
  68. 68.
    Sakata T, Fujisawa T, Yoshikawa T (2000) Colony formation and fatty acid composition of marine labyrinthulid isolates grown on agar media. Fish Sci 66:84–90CrossRefGoogle Scholar
  69. 69.
    Yamaoka Y, Carmona ML, Oota S (2004) Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under superbright red and blue light-emitting diodes. Biosci Biotechnol Biochem 68:1594–1597CrossRefGoogle Scholar
  70. 70.
    Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57Google Scholar
  71. 71.
    Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325CrossRefGoogle Scholar
  72. 72.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–927CrossRefGoogle Scholar
  73. 73.
    Zhu M, Zhou PP, Yu LJ (2002) Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresour Tech 84:93–95CrossRefGoogle Scholar
  74. 74.
    Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scalable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529CrossRefGoogle Scholar
  75. 75.
    Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985CrossRefGoogle Scholar
  76. 76.
    Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of super critical CO2 in lipid extraction—a review. J Food Eng 95:240–253CrossRefGoogle Scholar
  77. 77.
    Catchpole O, Ryan J, Zhu Y, Fenton K, Grey J, Vyssotski M, MacKenzie A, Nekrasov E, Mitchell K (2010) Extraction of lipids from fermentation biomass using near-critical dimethylether. J Supercrit Fluids 53:34–41CrossRefGoogle Scholar
  78. 78.
    Andrich G, Zinnai A, Nesti U, Venturi F, Fiorentini R (2006) Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Aliment 35:195–203CrossRefGoogle Scholar
  79. 79.
    Couto RM, Simoes PC, Reis A, Da Silva TL, Martins VH, Sanchez-Vicente Y (2010) Super critical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164Google Scholar
  80. 80.
    Chen C, Chou H (2002) Screening of red algae filaments as a potential alternative source of eicosapentaenoic acid. Mar Biotechnol 4:189–192CrossRefGoogle Scholar
  81. 81.
    Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547CrossRefGoogle Scholar
  82. 82.
    Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675CrossRefGoogle Scholar
  83. 83.
    Yang Y, Bennett GN, San K (1998) Genetic and metabolic engineering. Electron J Biotechnol 1:134–141CrossRefGoogle Scholar
  84. 84.
    Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10CrossRefGoogle Scholar
  85. 85.
    Tessman I, Poddar RK, Kumar S (1964) Identification of the altered bases in mutated single-stranded DNA I. in vitro mutagenesis by hydroxylamine, ethyl methane sulfonate and nitrous acid. J Mol Biol 9:352–363CrossRefGoogle Scholar
  86. 86.
    Ravanat J, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63:88–102CrossRefGoogle Scholar
  87. 87.
    Chatuverdi R, Uppalapati SR, Alamsjah MA, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J App Phycol 16:135–144CrossRefGoogle Scholar
  88. 88.
    Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815CrossRefGoogle Scholar
  89. 89.
    Metz J, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Kanuf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293CrossRefGoogle Scholar
  90. 90.
    Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31:297–300CrossRefGoogle Scholar
  91. 91.
    DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737Google Scholar
  92. 92.
    Zhang Y, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646CrossRefGoogle Scholar
  93. 93.
    Peberdy JF (1980) Protoplast fusion—a tool for genetic manipulation and breeding in industrial microorganisms. Enzyme Microb Technol 2:23–29CrossRefGoogle Scholar
  94. 94.
    Zhao M, Dai C, Guan X, Tao J (2009) Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp. Enzyme Microb Technol 45:419–425CrossRefGoogle Scholar
  95. 95.
    Yu R, Yamada A, Watanbe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35:1061–1064CrossRefGoogle Scholar
  96. 96.
    Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. App Environ Microbiol 77:1854–1861CrossRefGoogle Scholar
  97. 97.
    Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K (2003) Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. J Biosci Bioeng 95:435–440Google Scholar
  98. 98.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefGoogle Scholar
  99. 99.
    Ribeiro G, Corte-Real M, Johansson B (2010) Engineering of fatty acid production and secretion in Saccharomyces cerevisiae. In: FEBS workshop microbial lipids: from genomics to lipidomics, European Federation for the Science and Technology of Lipids, Vienna, AustriaGoogle Scholar
  100. 100.
    Ryan J, Farr H, Visnovsky S, Vyssotsky M, Visnovsky G (2010) A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. J Micobiol Method 82:49–53CrossRefGoogle Scholar
  101. 101.
    Bigelow N, Hardin W, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC–MS sub-microscale assay for fatty acids and its applications. J Am Chem Soc 88:1329–1338Google Scholar
  102. 102.
    Tang G, Suter PM (2011) Vitamin A, nutrition, and health values of algae, Chlorella and Dunaliella. J Pharm Nutr Sci 1:111–118CrossRefGoogle Scholar
  103. 103.
    Szabo NJ, Matulka RA, Kiss L, Licari P (2012) Safety evaluation of a high lipid whole algalin flour (WAF) from Chlorella protothecoides. Regul Toxicol Pharmacol 63:155–165CrossRefGoogle Scholar
  104. 104.
    Nigam PS, Singh A (2011) Production of liquid biofuels from renewable sources. Prog Energy Combust Sci 37:52–68CrossRefGoogle Scholar
  105. 105.
    Eckardt NA (2010) The Chlorella genome: big surprises from a small package. Plant Cell 22:2924CrossRefGoogle Scholar
  106. 106.
    Genetic sequencing of Botryococcus braunii underway. Biofuels seminar. Available via Internet at http://owubiofuels.wordpress.com/2010/03/20/genetic-sequencing-of-botryococcus-braunii-underway/
  107. 107.
    Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by the novo assembly of 5′-end sequences of full-length cDNA clones. Bioresour Technol 109:277–281CrossRefGoogle Scholar
  108. 108.
    Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv. doi:10.1016/j.biotechadv.2012.02.014 Google Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  1. 1.Fermentation and Metabolic Engineering GroupOcean Nutrition Canada LimitedDartmouthCanada

Personalised recommendations