A Novel Method for Simultaneous Monitoring of 2-MCPD, 3-MCPD and Glycidyl Esters in Oils and Fats

Original Paper


The availability of a reliable methodology for the quantification of fatty acid esters of monochloropropropanediol (MCPD) and glycidol is essential for understanding the mechanism of formation of these process contaminants and for developing effective mitigation strategies. While several analytical methods for the determination of MCPD esters have already been developed and evaluated, only very few procedures are currently available for the analysis of glycidyl esters. This work presents a new indirect method for the simultaneous quantification of fatty acid esters of 2-MCPD, 3-MCPD and glycidol. The method is based on the acid-catalyzed conversion of glycidyl esters into 3-monobromopropanediol (3-MBPD) monoesters which, owing to the structural similarity to MCPD esters, are quantified by using the procedure we previously optimized for the analysis of MCPD esters. The critical step of the method, which is the conversion of glycidyl esters, was optimized by testing different reagent concentrations and varying other condition settings. The novel method showed good repeatability (RSD <2.5 %) and between-day reproducibility (RSD ≤5 %). The limit of detection was 0.04 mg/kg for bound 2-MCPD and 3-MCPD and 0.06 mg/kg for bound glycidol. The trueness of the method was evaluated by the analysis of spiked samples and by interlaboratory comparison.


3-MCPD esters 2-MCPD esters Chloropropanols Glycidyl esters Glycidol MBPD Process contaminants Analysis Acid transesterification Oils Fats 

Reference List

  1. 1.
    Velíšek J, Davídek J, Kubelka V, Janíček G, Svobodová Z, Šimicová Z (1980) New chlorine-containing organic compounds in protein hydrolysates. J Agric Food Chem 28:1142–1144CrossRefGoogle Scholar
  2. 2.
    Svejkovská B, Novotný O, Divinová V, Réblová Z, Doležal M, Velíšek J (2004) Esters of 3-chloropropane-1,2-diol in foodstuffs. Czech J Food Sci 22:190–196Google Scholar
  3. 3.
    European Commission, Scientific Committee on Food (2001) Opinion on 3-monochloro-propane-1,2-diol (3-MCPD); SCF/CS/CNTM/OTH/17 Final. Available from: http://ec.europa.eu/food/fs/sc/scf/out91_en.pdf
  4. 4.
    Kuhlmann J (2008) Überbefunde bei der Bestimmung von 3-MCPD-Estern in Ölen & Fetten? Mögliche Ursachen und Konsequenzen. Oral presentation. 2nd Workshop on analysis of 3-MCPD-esters in edible oils, Federal Institute for Risk Assesment (BfR), BerlinGoogle Scholar
  5. 5.
    Weißhaar R, Perz R (2010) Fatty acid esters of glycidol in refined fats and oils. Eur J Lipid Sci Technol 112:158–165CrossRefGoogle Scholar
  6. 6.
    Habermeyer M, Guth S, Eisenbrand G (2011) Identification of gaps in knowledge concerning toxicology of 3-MCPD and glycidol esters. Eur J Lipid Sci Technol 113:314–318CrossRefGoogle Scholar
  7. 7.
    Hrnčiřík K, van Duijn G (2011) An initial study on the formation of 3-MCPD esters during oil refining. Eur J Lipid Sci Technol 113:374–379CrossRefGoogle Scholar
  8. 8.
    Divinová V, Svejkovská B, Doležal M, Velíšek J (2004) Determination of free and bound 3-chloropropane-1,2-diol by gas chromatography with mass spectrometric detection using deuterated 3-chloropropane-1,2-diol as internal standard. Czech J Food Sci 22:182–189Google Scholar
  9. 9.
    Weißhaar R (2008) Determination of total 3-chloropropane-1,2-diol (3-MCPD) in edible oils by cleavage of MCPD esters with sodium methoxide. Eur J Lipid Sci Technol 110:183–186CrossRefGoogle Scholar
  10. 10.
    Kuhlmann J (2011) Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur J Lipid Sci Technol 113:335–344CrossRefGoogle Scholar
  11. 11.
    Karasek L, Wenzl T, Ulberth F (2010) Proficiency test on the determination of 3-MCPD esters in edible oil [Internet]. Geel (Belgium): Publications Office of the European Union. Available from: http://irmm.jrc.ec.europa.eu/html/interlaboratory_comparisons/3_MCPD/index.htm
  12. 12.
    Hrnčiřík K, Zelinková Z, Ermacora A (2011) Critical factors of indirect determination of 3-chloropropane-1,2-diol esters. Eur J Lipid Sci Technol 113:361–367CrossRefGoogle Scholar
  13. 13.
    Federal Institute for Risk Assessment (2010) Second collaborative study for the determination of 3-mcpd-fatty acid esters in edible fats and oils, method validation and proficiency test, final report (unpublished)Google Scholar
  14. 14.
    Ermacora A, Hrnčiřík K (2011) 3-MCPD esters analysis: An optimized method based on acid transesterification. 7th AOCS expert panel on process contaminants. Oral presentation. Available from: http://www.aocs.org/files/ResourcesPDF/notes%207th%20expert%20panel.pdf
  15. 15.
    Masukawa Y, Shiro H, Nakamura S, Kondo N, Jin N, Suzuki N, Ooi N, Kudo N (2010) A new analytical method for the quantification of glycidol fatty acid esters in edible oils. J Oleo Sci 59:81–88CrossRefGoogle Scholar
  16. 16.
    Haines TD, Adlaf KJ, Pierceall RM, Lee I, Venkitasubramanian P, Collison MW (2011) Direct determination of MCPD fatty acid esters and glycidyl fatty acid esters in vegetable oils by LC-TOFMS. J Am Oil Chem Soc 88:1–14CrossRefGoogle Scholar
  17. 17.
    DGF. Deutsche Gesellschaft für Fettwissenschaft: DGF Standard Method C-VI 18 (2011) Fatty-acid-bound 3-chloropropane-1,2-diol (3-MCPD) and 2,3-epoxipropane-1-ol (glycidol). Determination in oils and fats by GC/MS (Differential measurement). Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und verwandten Stoffen [Internet]. Stuttgart (Germany): Wissenschaftliche Verlagsgesellschaft. Available from: http://www.dgfett.de/methods/c_vi_18_%2810%29-english.pdf
  18. 18.
    Ermacora A, Hrnčiřík K (2012) Evaluation of an improved indirect method for the analysis of 3-MCPD esters based on acid transesterification. J Am Oil Chem Soc 89:211–217CrossRefGoogle Scholar
  19. 19.
    Kraft R, Brachwitz H, Etzold G, Langen P, Zöpel H-J (1979) Massenspektrometrische Strukturuntersuchung stellungsisomerer Fettsäureester der Halogenpropandiole (Desoxyhalogen-glyceride). J Prakt Chem 321:756–768CrossRefGoogle Scholar
  20. 20.
    Bruice PY (2007) Substitution reactions of alkyl halides. Organic Chemistry, 5th ed. Pearson International Inc., Upper Saddle river, NJ, pp 344–388Google Scholar
  21. 21.
    Parker RE, Isaacs NS (1959) Mechanism of epoxide reactions. Chem Rev 159:737–799CrossRefGoogle Scholar
  22. 22.
    Brønsted JN, Kilpatrick M, Kilpatrick M (1929) Kinetic studies of ethylene oxides. J Am Chem Soc 51:428–461CrossRefGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  1. 1.Department of Fat TechnologyUnilever R&D VlaardingenAT VlaardingenThe Netherlands

Personalised recommendations