Skip to main content
Log in

Characterization of the Solvent Properties of Glycerol Using Inverse Gas Chromatography and Solubility Parameters

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The production of glycerol from the synthesis of biodiesel has led to a market surplus of this polyhydric alcohol and additional research to find new applications for this versatile chemical. This study involves the use of inverse gas chromatography (IGC) to characterize the solute–solvent interactions between glycerol and a homologous series of aliphatic alcohols, in which the latter components are at infinite dilution in the glycerol, which is the stationary phase contained in a packed GC column. The IGC experiments were conducted between 51.5 and 111 °C for the n-alcohols ranging from methanol to n-butanol. All of the n-alcohol homologs exhibited positive deviations from Raoult’s law as based on mole fraction activity coefficients values ranging from 1.86 to 14.4. The measured mole fraction activity coefficients of the alcoholic solutes in glycerol showed good agreement with literature values, and in some cases with those predicted using existing theoretical models. The mole fraction activity coefficients increased going from methanol to n-butanol, reflecting the change in the alcohol’s cohesive energy densities relative to that for glycerol. The total solubility parameter of glycerol calculated from IGC data was found to be 34.8 MPa1/2 which is in good agreement with that obtained using Hansen solubility parameter approach (31.6 MPa1/2). This data can be used to characterize the solvent properties of glycerol as well as to provide thermodynamic data for the removal of the alcoholic solutes from glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  2. Kenar JA (2007) Glycerol as a platform chemical: sweet opportunities on the horizon? Lipid Technol 19:249–253

    Article  CAS  Google Scholar 

  3. King JW, Holliday RL, List GR (1999) Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chem 1:261–264

    Article  CAS  Google Scholar 

  4. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  5. Petrou EC, Pappis CP (2009) Biofuels: a survey on pros and cons. Energ Fuel 23:1055–1066

    Article  CAS  Google Scholar 

  6. Pagliaro M, Rossi M (2010) The future of glycerol, 2nd edn. RSC Publishing, Cambridge

    Google Scholar 

  7. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  8. Robergs RA, Griffin SE (1998) Glycerol: biochemistry, pharmacokinetics and clinical and practical applications. Sports Med 26:145–167

    Article  CAS  Google Scholar 

  9. Sharma SC, Yang RK (1986) Chewing gum compositions containing novel sweetener delivery systems and method of preparation. US Patent 4,597,970

  10. Melero JA, van Grieken R, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energ Fuel 21:1782–1791

    Article  CAS  Google Scholar 

  11. Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields and selectivities. Environ Chem Lett 2:67–71

    Article  Google Scholar 

  12. Cumming APC, Morton F (1952) Solvent extraction of phenol from coal-tar hydrocarbons: the use of glycerol, triethylene glycol and their aqueous solutions as solvents. J Appl Chem 2:314–323

    Article  CAS  Google Scholar 

  13. Voelkel A, Strzemiecka B, Adamska K, Milczewska K (2009) Inverse gas chromatography as a source of physicochemical data. J Chromatogr A 1216:1551–1566

    Article  CAS  Google Scholar 

  14. Eckert CA, Newman BA, Nicolaides GL, Long TC (1981) Measurement and application of limiting activity coefficients. AIChE J 27:33–40

    Article  CAS  Google Scholar 

  15. Trampe DB, Eckert CA (1993) Dew point technique for limiting activity coefficient in nonionic solutions. AIChE J 39:1045–1050

    Article  CAS  Google Scholar 

  16. Kojima K, Zhang S, Hiaki T (1997) Measuring methods of infinite dilution activity coefficients and a database for systems including water. Fluid Phase Equilibr 131:145–179

    Article  CAS  Google Scholar 

  17. King JW, List GR (1990) A solution thermodynamic study of soybean oil/solvent systems by inverse gas chromatography. J Am Oil Chem Soc 67:424–430

    Article  CAS  Google Scholar 

  18. Zeng C, Li J, Wang D, Chen T, Zhao C, Chen C (2006) Infinite dilution activity and diffusion coefficients in polymers by inverse gas chromatography. J Chem Eng Data 51:93–98

    Article  CAS  Google Scholar 

  19. Srinivas K, Potts TM, King JW (2009) Characterization of solvent properties of methyl soyate by inverse gas chromatography and solubility parameters. Green Chem 11:1581–1588

    Article  CAS  Google Scholar 

  20. Voelkel A, Kopczynski T (1998) Inverse gas chromatography in the examination of organic compounds: polarity and solubility parameters of isoquinoline derivatives. J Chromatogr A 795:349–357

    Article  CAS  Google Scholar 

  21. Adamska K, Bellinghausen R, Voelkel A (2008) New procedure for the determination of Hansen solubility parameters by inverse gas chromatography. J Chromatogr A 1195:146–149

    Article  CAS  Google Scholar 

  22. Martire DE (1963) Gas chromatography. In: Fowler L (ed) Academic Press, New York, pp 33–54

  23. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in non-ideal liquid mixtures. AIChE J 21:1086–1099

    Article  CAS  Google Scholar 

  24. Bobbitt NS, King JW (2010) Physicochemical characterization of dilute n-alcohol/biodiesel mixtures by inverse gas chromatography. J Chromatogr A 1217:7898–7906

    Article  CAS  Google Scholar 

  25. Nitta T, Moringa K, Katayama T (1982) Gas chromatographic study of limiting activity coefficients of organic solutes in squalene. Ind Eng Chem Fundamen 21:396–401

    Article  CAS  Google Scholar 

  26. Yaws CL, Narasimhan PK, Gabbula C (2009) Yaws’ handbook of Antoine coefficients for vapor pressure. 2nd electronic edn. Knovel Corporation, available online at http://www.knovel.com

  27. Ge M-N, Ma J-L, Wu C-G (2010) Activity coefficients at infinite dilution of alkanes, alkenes and alkyl benzenes in glycerol using gas–liquid chromatography. J Chem Eng Data 55:1714–1717

    Article  CAS  Google Scholar 

  28. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton, USA

  29. Jayasri A, Yaseen M (1980) Nomograms for solubility parameter. J Coatings Technol 52:41–45

    CAS  Google Scholar 

  30. Dow Chemical Corporation (accessed Jun. 2009) Miscibility of organic solvents with glycerine. http://www.dow.com/glycerine/resources/table23.htm

  31. Redelius P (2007) Hansen solubility parameters of asphalt, bitumen, and crude oils. In: Hansen CM (ed) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, pp 151–176

    Chapter  Google Scholar 

  32. Cruickshank AJB, Gainey BW, Hicks CP, Letcher TM, Moody RW, Young CL (1969) Gas–liquid chromatographic determination of cross-term second virial coefficients using glycerol. Trans Faraday Soc 65:1014–1031

    Article  CAS  Google Scholar 

  33. Castells RC, Arancibia EL, Nardillo AM (1982) Solution and adsorption of hydrocarbons in glycerol as studied by gas–liquid chromatography. J Phys Chem 86:4456–4460

    Article  CAS  Google Scholar 

  34. Martire DE (1966) Solute adsorption at the gas–liquid interface in gas–liquid chromatography. Anal Chem 38:244–255

    Article  CAS  Google Scholar 

  35. Locke DC (1968) Chromatographic study of solutions of hydrocarbons in acetonitrile. J Gas Chromatogr 35:24–36

    Article  CAS  Google Scholar 

  36. Tiegs D, Gmehling J, Medina A, Soares A, Bastos J, Alessi P, Kikic I, Schiller M and Menke J (1986) Activity coefficients at infinite dilution. vol. 9, Part 1. DECHEMA Chemistry Data Series, Frankfurt, Germany

  37. Tizvar R, McLean DD, Kates M, Dube MA (2009) Optimal separation of glycerol and methyl oleate via liquid–liquid extraction. J Am Oil Chemists Soc 54:1541–1550

    CAS  Google Scholar 

  38. Chiu C-W, Goff MJ, Suppes GJ (2005) Distribution of methanol and catalysts between biodiesel and glycerin phases. AIChE J 51:1274–1278

    Article  CAS  Google Scholar 

  39. King JW (1989) Fundamentals and applications of supercritical fluid extraction in chromatographic science. J Chromatogr Sci 27:355–364

    CAS  Google Scholar 

  40. King JW (1995) Determination of the solubility parameter of soybean oil by inverse gas chromatography. Lebensm-Wiss U-Technol 28:190–195

    Article  CAS  Google Scholar 

  41. Zhou W, Boocock DGB (2006) Phase distributions of alcohol, glycerol, and catalyst in the transesterification of soybean oil. J Am Oil Chemists Soc 83:1047–1052

    Article  CAS  Google Scholar 

  42. Alli A, Hazer B, Baysal BM (2006) Determination of solubility parameters of cross-linked macromonomeric initiators based on propylene glycol. Euro Polymer J 42:3024–3031

    Article  CAS  Google Scholar 

  43. Roy SK, Chanda M (2006) Plastics technology handbook: plastics engineering series. CRC Press, Boca Raton

    Google Scholar 

  44. Fedors RF (1974) A method for estimating both the solubility parameters and the molar volumes of liquids. Polymer Eng Sci 14:147–154

    Article  CAS  Google Scholar 

  45. Gafner S, Bergeron C, McCollom MM, Cooper LM, McPhail KL, Gerwick WH, Angerhofer CK (2004) Evaluation of the efficiency of three different solvent systems to extract triterpene saponins from roots of Pana quinquefolius using high-performance liquid chromatography. J Agric Food Chem 52:1546–1550

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Joel Vincent acknowledges the University of Arkansas Honors College for a grant which made this study possible. We would also like to acknowledge Mr. Harold Watson of the Department of Chemical Engineering at the University of Arkansas for his technical assistance during various aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. King.

About this article

Cite this article

Vincent, J.D., Srinivas, K. & King, J.W. Characterization of the Solvent Properties of Glycerol Using Inverse Gas Chromatography and Solubility Parameters. J Am Oil Chem Soc 89, 1585–1597 (2012). https://doi.org/10.1007/s11746-012-2070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2070-6

Keywords

Navigation