Journal of the American Oil Chemists' Society

, Volume 89, Issue 7, pp 1183–1191 | Cite as

A Dynamic Light Scattering Study on the Complex Assembly of Glycinin Soy Globulin in Aqueous Solutions

  • Víctor M. Pizones Ruiz-Henestrosa
  • María J. Martinez
  • Juan M. R. Patino
  • Ana M. R. Pilosof
Original Paper


In this work, the complex assembly of one of the major storage proteins in soybean, glycinin, was analyzed using dynamic light scattering, from the hydrodynamic diameter of assembled forms in solution. The protein concentration and temperature were maintained constant at 10−1% w/w and 20 °C, respectively, and the pH was 7.6, 7.0 and 3.0. By analyzing the intensity and volume size distributions, a complex equilibrium between self-assembled forms could be determined. At pH 7.6 and an ionic strength of 0.5 M, where the self-assembly of glycinin has been widely reported in the literature, the DLS technique revealed an equilibrium between different assembled forms, that shifted towards the 11S form. At a lower ionic strength for pH 3.0 or 7.0, the 7S form predominated. The hydrodynamic diameter evolved differently upon heating, depending on pH and ionic strength. For pH 7 (I = 0.05) and 7.6 (I = 0.5) a significant increase in dH was observed at a temperatures of 55 and 70 °C, respectively, which were significantly lower than the denaturation onset temperatures as determined by DSC. No changes in dH nor a transition endotherm were observed at pH 3.


Globulin Soy Dynamic light scattering Structure 



Dynamic light scattering


Sodium bisulfite


Sodium dodecyl sulfate


  1. 1.
    Kinsella JE (1979) Functional properties of soy proteins. J Am Oil Chem Soc 56:242–258CrossRefGoogle Scholar
  2. 2.
    Utsumi S, Matsumura Y, Tomohiko M (1997) Structure–function relationships of soy proteins. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel Dekker, New York, pp 257–292Google Scholar
  3. 3.
    Wolf WJ (1970) Soybean proteins: their functional, chemical and physical properties. J Agric Food Chem 18:969–976CrossRefGoogle Scholar
  4. 4.
    Utsumi S, Kinsella JE (1985) Structure–function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S and soy isolate proteins. J Agric Food Chem 33:297–303CrossRefGoogle Scholar
  5. 5.
    Pizones Ruiz-Henestrosa VM, Carrera Sánchez C, MdM Yust Escobar, Pedroche Jiménez JJ, Millán Rodríguez F, Rodríguez Patino JM (2007) Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloid Surf Physicochem Eng Asp 309:202–215CrossRefGoogle Scholar
  6. 6.
    Wolf WJ (1993) Sulfhydryl content of glycinin: effect of reducing agents. J Agric Food Chem 41:168–176CrossRefGoogle Scholar
  7. 7.
    Staswick PE, Hermodson MA, Nielsen NC (1981) Identification of the acidic and basic subunit complexes of glycinin. J Biol Chem 256:8752–8755Google Scholar
  8. 8.
    Martin AH, Bos MA, Van Vliet T (2002) Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface. Food Hydrocolloids 16:63–71CrossRefGoogle Scholar
  9. 9.
    Banachowicz E (2006) Light scattering studies of proteins under compression. Biochim Biophys Acta 1764:405–413Google Scholar
  10. 10.
    Sugino E, Nishiura C, Minoura K, In Y, Sumida M, Taniguchi T, Tomoo K, Ishida T (2009) Three-/four-repeat-dependent aggregation profile of tau microtubule-binding domain clarified by dynamic light scattering analysis. Biochem Biophys Res Commun 385:236–240CrossRefGoogle Scholar
  11. 11.
    Lakemond CMM, de Jong HHJ, Hessing M, Gruppen H, Voragen AGJ (2000) Soy glycinin: influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. J Agric Food Chem 48:1985–1990CrossRefGoogle Scholar
  12. 12.
    Nagano T, Hirotsuka M, Mori H, Kohyama K, Nishinari K (1992) Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. J Agric Food Chem 40:941–944CrossRefGoogle Scholar
  13. 13.
    Molina O, Sara E, Carrera Sánchez C, Rodríguez Niño MR, Añón C, Rodriıguez Patino JM (2003) Structural characterization and surface activity of spread and adsorbed soy globulin films at equilibrium. Coll Surf B 32:57–67CrossRefGoogle Scholar
  14. 14.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  15. 15.
    Bollag DM, Eldestein SJ (1991) Gel Electrophoresis under denaturing conditions In: Bollag DM, Eldestein SJ (eds) Protein methods, Wiley-Liss I, New York, pp. 95–142Google Scholar
  16. 16.
    Berne BJ, Pecora R (1976) Dynamic light scattering with applications to chemistry biology and physics. Wiley, New YorkGoogle Scholar
  17. 17.
    Navarra G, Leone M, Militello V (2007) Thermal aggregation of β-lactoglobulin in presence of metal ions. Biophys Chem 131:52–61CrossRefGoogle Scholar
  18. 18.
    Malvern-instruments calculating volume distributions from dynamic light scattering data
  19. 19.
    Mo X, Zhong Z, Wang D, Sun X (2006) Soybean glycinin subunits: characterization of physicochemical and adhesion properties. J Agric Food Chem 54:7589–7593CrossRefGoogle Scholar
  20. 20.
    Carp DJ, Bartholomai GB, Pilosof AMR (1999) Electrophoretic studies for determining soy proteins–xanthan gum interactions in foams. Coll Surf B 12:309–316CrossRefGoogle Scholar
  21. 21.
    Peng IC, Quass DW, Dayton WR, Allen CE (1984) The physicochemical and functional properties of soybean 11S globulin: a review. Cereal Chem 61:480–490Google Scholar
  22. 22.
    Naismith WEF (1955) Ultracentrifuge studies on soya bean protein. Biochim Biophys Acta 16:203–210CrossRefGoogle Scholar
  23. 23.
    Wolf WJ, Briggs DR (1956) Ultracentrifugal investigation of the effect of neutral salts on the extraction of soybean proteins. Arch Biochem Biophys 63:40–49CrossRefGoogle Scholar
  24. 24.
    Wolf WJ, Rackis JJ, Smith AK, Sasame HA, Babcock GE (1958) Behavior of the 11S protein of soybeans in acid solutions I. effects of pH, Ionic strength and time on ultracentrifugal and optical rotatory properties. J Am Chem Soc 80:5730–5735CrossRefGoogle Scholar
  25. 25.
    Badley RA, Atkinson D, Hauser H, Oldani D, Green JP, Stubbs JM (1975) The structure, physical and chemical properties of the soy bean protein glycinin. Biochim Biophys Acta 412:214–228Google Scholar
  26. 26.
    Wolf WJ, Briggs DR (1958) Studies on the cold-insoluble fraction of the water-extractable soybean proteins. II. Factors influencing the conformation changes in the 11S component. Arch Biochem Biophys 76:377–393CrossRefGoogle Scholar
  27. 27.
    Utsumi S, Nakamura T, Harada K, Mori T (1987) Occurrence of dissociable and undissociable soybean glycinin. Agric Biol Chem 51:2139–2144CrossRefGoogle Scholar
  28. 28.
    Wolf WJ, Nelsen TC (1996) Partial purification and characterization of the 15S globulin of soybeans, a dimer of glycinin. J Agric Food Chem 44:785–791CrossRefGoogle Scholar
  29. 29.
    Malvern-instruments dynamic light scattering. Basic theory & practical application
  30. 30.
    Rackis JJ, Smith AK, Babcock GE, Sasame HA (1957) An ultracentrifugal study on the association–dissociation of glycinin in acid solution. Org Biol Chem 79:4655–4658Google Scholar
  31. 31.
    Mori T, Utsumi S (1979) Purification and properties of storage proteins of broad bean. Agric Biol Chem 43:577–583CrossRefGoogle Scholar
  32. 32.
    Tsapikouni TS, Missirlis YF (2007) pH and ionic strength effect on a single fibrinogen molecule adsorption on mica studied with AFM. Coll Surf B 57:89–96CrossRefGoogle Scholar
  33. 33.
    Ciferri A (2008) Charge-dependent and charge-independent contributions to Ion–protein interaction. Biopolymers 89:700–709CrossRefGoogle Scholar
  34. 34.
    Li X, Cheng Y, Yi C, Hua Y, Yang C, Cui S (2009) Effect of ionic strength on the heat-induced soy protein aggregation and the phase separation of soy protein aggregate/dextran mixtures. Food Hydrocolloids 23:1015–1023CrossRefGoogle Scholar
  35. 35.
    Dev S, Surolia A (2006) Dynamic light scattering study of peanut agglutinin: size, shape and urea denaturation. J Biosci 31:551–556CrossRefGoogle Scholar
  36. 36.
    Markossian KA, Khanova HA, Kleimenov SY, Levitsky DI, Chebotareva NA, Asryants RA, Muronetz VI, Saso L, Yudin IK, Kurganov BI (2006) Mechanism of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 45:13375–13384CrossRefGoogle Scholar
  37. 37.
    Santiago PS, Carvalho JWP, Domingues MM, Santos NC, Tabak M (2010) Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies. Biophys Chem 152:128–138CrossRefGoogle Scholar
  38. 38.
    Chodankar S, Aswal VK, Kohlbrecher J, Vavrin R, Wagh AG (2008) Structural evolution during protein denaturation as induced by different methods. Phys Rev E 77:031901CrossRefGoogle Scholar
  39. 39.
    Renkema JMS, Gruppen H, van Vliet T (2002) Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J Agric Food Chem 50:6064–6071CrossRefGoogle Scholar
  40. 40.
    Kim KS, Kim S, Yang HJ, Kwon DY (2004) Changes of glycinin conformation due to pH, heat and salt determined by differential scanning calorimetry and circular dichroism. Int J Food Sci Technol 39:385–393CrossRefGoogle Scholar
  41. 41.
    Puppo MC, Añón MC (1999) Soybean protein dispersions at acid pH. Thermal and rheological properties. J Food Sci 64:50–56CrossRefGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  • Víctor M. Pizones Ruiz-Henestrosa
    • 1
    • 2
  • María J. Martinez
    • 1
  • Juan M. R. Patino
    • 2
  • Ana M. R. Pilosof
    • 1
  1. 1.Departamento de Industrias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Ingeniería Química, Facultad de QuímicaUniversidad de SevillaSevillaSpain

Personalised recommendations