Skip to main content

Potential of Jatropha curcas as a Biofuel, Animal Feed and Health Products

Abstract

Jatropha curcas is a multipurpose plant with numerous attributes. It can potentially become one of the world’s key energy crops. Its seed weighs 0.53–0.86 g and the seed kernel contains 22–27% protein and 57–63% lipid indicating good nutritional value. The seeds can produce crude vegetable oil that can be transformed into high quality biodiesel. Several methods for oil extraction have been developed. In all processes, about 75% of the weight of the seed remains as a press cake containing mainly carbohydrates, protein and residual oil and is a potential source of livestock feed. The highly toxic nature of whole as well as dehulled seed meal due to the presence of high levels of shells, toxic phorbol esters and other antinutrients prevents its use in animal diet. The genetic variation among accessions from different regions of the world and rich diversity among Mexican genotypes in terms of phorbol ester content and distinct molecular profiles indicates the potential for improvement of germplasm of Jatropha through breeding programs. The extracts of Jatropha display potent cytotoxic, antitumor, anti-inflammatory and antimicrobial activities. The possibilities on the exploitation potential of this plant through various applications have been explored.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Dyer JM, Mullen RT (2008) Engineering plant oils as high value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol Plant 132:11–22

    CAS  Google Scholar 

  2. 2.

    Glover JD, Cox CM, Reganold JP (2007) Future farming: a return to roots? Sci Am 297:82–89

    Google Scholar 

  3. 3.

    Fairless D (2007) Biofuel: the little shrub that could: maybe. Nature 499:652–655

    Google Scholar 

  4. 4.

    Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82

    CAS  Google Scholar 

  5. 5.

    Becker K, Makkar HPS (2008) Jatropha curcas: a potential source for tomorrow’s oil and biodiesel. Lipid Technol 20:104–107

    CAS  Google Scholar 

  6. 6.

    Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Google Scholar 

  7. 7.

    ENVIS-NBRI, Lucknow (2009) Jatropha: the biofuel plant. Newsletter 5:1–8

    Google Scholar 

  8. 8.

    Carvalho AMX, Moreira BC, Silva MCS, Silva ND, Kasuya MCM (2007) Fungos Micorrizicos Arbusculares em Plantios de Pinhao Manso (Jatropha curcas L.) XXX1 Congresso Brasilerio de Ciencia do Solo. Conquistas e Desafios da Ciencia do Solo Brasileria Gramado-RS. http://www6.ufrgs.br/cbcs/trabalhos/trabalhos/trab_9897-1924.pdf

  9. 9.

    Kochhar S, Singh SP, Kochhar VK (2008) Effects of auxins and associated biochemical changes during clonal propagation of the biofuel plant–Jatropha curcas. Biomass Bioenergy 32:1136–1143

    CAS  Google Scholar 

  10. 10.

    Abdelgadir HA, Johnson SD, Van staden J (2008) Approaches to improve seed production of Jatropha curcas L. S Afr J Bot 74:359

    Google Scholar 

  11. 11.

    Heller J (1996) Physic nut Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops, vol. I. Institute of Plant Genetics and Crop Plant Research and International Plant Genetic Resources Institute, Rome

    Google Scholar 

  12. 12.

    Zanzi R, Perez JAS, Soler PB (2008) Production of biodiesel from J. curcas in the region of Guantanamo in Cuba. Third International Congress University—industry cooperation, Ubatuba, Brazil

  13. 13.

    Singh RN, Vyas DK, Srivastava NSL, Narra M (2008) SPRER1 experience on holistic approach to utilize all parts of J. curcas fruit for energy. Renew Energy 33:1868–1973

    CAS  Google Scholar 

  14. 14.

    Jones N, Miller J (1997) Jatropha curcas: a multipurpose species for problematic site. The World Bank, Washington

    Google Scholar 

  15. 15.

    Dehgan B, Webster GL (1979) Morphology and infragene relationships of the genus Jatropha (Euphorbiaceae). University of California Press, Berkeley

    Google Scholar 

  16. 16.

    Akintayo ET (2004) Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour Technol 92:307–310

    CAS  Google Scholar 

  17. 17.

    Fagbenro-Beyioku AF, Oyibo WA, Anuforom BC (1998) Disinfectant/antiparasitic activities of Jatropha curcas. E Afr Med J 75:508–511

    CAS  Google Scholar 

  18. 18.

    Kirtikar KR, Basu BD (1991) Indian medicinal plants. Shiva Publishers, Dehradun, vol 4, pp 2240–2247

  19. 19.

    Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Tech 111:773–787

    CAS  Google Scholar 

  20. 20.

    Gubitz GM, Mittelbech M, Trabi M (1999) Exploitation of tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    CAS  Google Scholar 

  21. 21.

    Singh RA, Munish K, Haiden E (2007) Synergistic cropping of summer groundnut with Jatropha curcas a new two-tier cropping system for Uttar Pradesh. ICRISAT J 5:1–2

    Google Scholar 

  22. 22.

    Morton JF (1981) Atlas of medicinal plants of Middle America. Bahamas to Yucantan. CC Thomas, Springfield

    Google Scholar 

  23. 23.

    Tewari JP, Shukla IK (1982) Inhibition of infectivity of two strains of watermelon mosaic virus by latex of some Angiosperms. Geobios (Jodhpur, India) 9:124–126

    Google Scholar 

  24. 24.

    Osoniyi O, Onajobi F (2003) Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol 89:101–105

    Google Scholar 

  25. 25.

    Mujumdar AM, Misar AV, Salaskar MV, Upadhye AS (2001) Antidiarrhoeal effect of and isolated fraction of Jatropha curcas roots in mice. J Nat Remedies 1:89–93

    Google Scholar 

  26. 26.

    Mujumdar AM, Misar AV (2004) Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J Ethnopharmacol 90:11–15

    CAS  Google Scholar 

  27. 27.

    Makkar HPS, Becker K (1997) Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci (Cambridge) 128:311–322

    Google Scholar 

  28. 28.

    Makkar HPS, Becker K (1999) Plant toxins and detoxification methods to improve feed quality of tropical seeds—review. Asian Austral J Anim 12:467–480

    Google Scholar 

  29. 29.

    Rakshit KD, Makkar HPS, Becker K (2010) Nutritional, biochemical and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58:6543–6555

    Google Scholar 

  30. 30.

    Martinez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents and effects of different treatments on their levels, in four provenances of J. curcas L. from Mexico. Food Chem 96:80–89

    CAS  Google Scholar 

  31. 31.

    Duke JA (1985) Medicinal plants. Science 229:1036

    CAS  Google Scholar 

  32. 32.

    Ochse JJ (1931) Vegetables of the Dutch East Indices. Asher, Amsterdam reprinted 1980

    Google Scholar 

  33. 33.

    Ng KS, Ooi WY, Goh LK, Shenbagarathai R, Sudesh K (2010) Evaluation of Jatropha oil to produce poly (3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stabil 95:1365–1369

    CAS  Google Scholar 

  34. 34.

    Vyas DK, Singh RN (2007) Feasibility study of Jatropha seed husk as an open core gasifier feedstock. Renew Energy 32:512–517

    CAS  Google Scholar 

  35. 35.

    Mahanta N, Gupta A, Khare SK (2008) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol 99:1729–1735

    CAS  Google Scholar 

  36. 36.

    Lestari D, Wim JM, Johan PMS (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53:297–304

    CAS  Google Scholar 

  37. 37.

    Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs non-edible oil vs waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    CAS  Google Scholar 

  38. 38.

    Srivastava A, Prasad R (2004) Triglycerides—based diesel fuels. Renew Sustain Energy Rev 4:111–133

    Google Scholar 

  39. 39.

    Willems P, Kuipers NJM, De Hann AB (2008) Gas assisted mechanical expression of oil seeds: influence of process parameters on oil yield. J Supercrit Fluid 45:298–305

    CAS  Google Scholar 

  40. 40.

    Beerens P (2007) Screw-pressing of Jatropha seeds for fueling purposes in less developed countries. Master of Science dissertation Eindhoven University of Technology

  41. 41.

    Veronique JB, Chornick T, James KD (2002) Comparison of methods to measure the oil contents in oilseeds. J Oleo Sci 51:589–597

    Google Scholar 

  42. 42.

    Shah S, Sharma A, Gupta MN (2004) Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind Crop Prod 20:275–279

    CAS  Google Scholar 

  43. 43.

    Kaushik N, Kumar K, Kumar S, Kaushik N, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502

    CAS  Google Scholar 

  44. 44.

    Schwab AW, Baghy MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372

    CAS  Google Scholar 

  45. 45.

    Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    CAS  Google Scholar 

  46. 46.

    Al-Zuhair S, Ling FW, Jun LS (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960

    CAS  Google Scholar 

  47. 47.

    Canakci M, Van Gerpen J (1999) Biodiesel production via acid catalysis. Trans Am Soc Agric Eng 42:1203–1210

    CAS  Google Scholar 

  48. 48.

    Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    CAS  Google Scholar 

  49. 49.

    Tiwari KA, Kumar A, Raheman H (2007) Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575

    Google Scholar 

  50. 50.

    Ozaki E, Uragaki T, Sakashita K, Sakimate A (1995) Enzymatic preparation of alkanedicarboxylic acid monoesters. Chem Lett 24:539–540

    Google Scholar 

  51. 51.

    Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H (2007) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

    Google Scholar 

  52. 52.

    Chen CH, Chen WH, Chang CMJ, Lai SM, Tu CH (2010) Biodiesel production from supercritical carbon dioxide extracted Jatropha oil using subcritical hydrolysis and supercritical methylation. J Supercrit Fluid 52:228–234

    CAS  Google Scholar 

  53. 53.

    Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    CAS  Google Scholar 

  54. 54.

    Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economic and technical implications. Energy Fuel 23:2325–2341

    CAS  Google Scholar 

  55. 55.

    Sujatha M, Papi Reddy T, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    CAS  Google Scholar 

  56. 56.

    Ganesh Ram S, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Google Scholar 

  57. 57.

    Basha SD, Sujatha EM (2007) Inter and intra population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population specific SCAR markers. Euphytica 156:375–386

    CAS  Google Scholar 

  58. 58.

    Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single—primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540

    CAS  Google Scholar 

  59. 59.

    Sun QB, Li LF, Li Y, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in china. Crop Sci 48:1865–1871

    CAS  Google Scholar 

  60. 60.

    Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. a biofuel plant. Plant Sci 176:505–513

    CAS  Google Scholar 

  61. 61.

    Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L. BMC Res Notes 3:42

    Google Scholar 

  62. 62.

    Vieira RF (1999) Conservation of medicinal and aromatic plants in Brazil. In: Janick J (ed) Perspectives on new crops and new uses. ASHS press, Alexandria, VA, pp152–159

  63. 63.

    Sunil N, Varaprasad KS, Sivaraj N, Suresh Kumar T, Abraham B, Prasad RBN (2008) Assessing Jatropha curcas L. germplasm in-situ—a case study. Biomass Bioenergy 32:198–202

    CAS  Google Scholar 

  64. 64.

    Liberalino AAA, Bambirra EA, Moraes-Santos T, Viera CE (1988) Jatropha curcas L. seeds chemical analysis and toxicity. Arq Biol Technol 31:539–550

    CAS  Google Scholar 

  65. 65.

    Becker K, Makkar HPS (1998) Toxic effects of phorbol esters in carp (Cyprinus carpio). Vet Hum Toxicol 40:82–86

    CAS  Google Scholar 

  66. 66.

    Stripe F, Pession-brizzi A, Lorenzoni E, Stroccji L, Montanaro I, Sperti S (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Biochem J 156:1–6

    Google Scholar 

  67. 67.

    Adolf W, Opferkuch HJ, Hecker E (1984) Irritant phorbol derivatives from four Jatropha species. Phytochemistry 23:129–132

    CAS  Google Scholar 

  68. 68.

    Cano-Asselein LM, Plumbly RA, Hylands PJ (1989) Purification and partial characterization of the haemagglutination from seeds of Jatropha curcas. J Food Biochem 13:1–20

    Google Scholar 

  69. 69.

    Aderibigbe AO, Johnson COLE, Makkar HPS, Becker K, Foidl N (1997) Chemical composition and effect of heat on organic matter and nitrogen degradability and some antinutritional components of Jatropha meal. Anim Feed Sci Tech 67:223–243

    CAS  Google Scholar 

  70. 70.

    Aregheore EM, Makkar HPS, Becker K (1998) Assessment of lectin activity in a toxic and a non-toxic variety of Jatropha curcas using latex agglutination and haemagglutination methods and inactivation of lectin by heat treatments. J Sci Food Agric 77:349–352

    CAS  Google Scholar 

  71. 71.

    Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88:1542–1548

    CAS  Google Scholar 

  72. 72.

    Makkar HPS, Becker K (2009a) Challenges and opportunities for using byproducts from the production of biodiesel from Jatropha oil as livestock feed. In: Proceedings of Animal Nutrition Association World Conference, February 14–17, New Delhi, India, 168–170

  73. 73.

    Liang Y, Siddaramu T, Yesuf J, Sarkany N, Abughazaleh A, Umagiliyage AL, Choudhary R (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424

    CAS  Google Scholar 

  74. 74.

    Evans FJ (1986) Environmental hazards of diterpene esters from plants. In: Evans FJ (ed) Naturally occurring phorbol esters. CRC press, Boca Raton, pp 1–31

    Google Scholar 

  75. 75.

    Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65:1434–1440

    CAS  Google Scholar 

  76. 76.

    Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity and toxicity in animals. Int J Toxicol 26:279–288

    CAS  Google Scholar 

  77. 77.

    Hirota M, Suttajit M, Suguri H, Endo Y, Shudo K, Wongchai V, Hecker E, Fujiki H (1988) A new tumor promoter from the seed oil of Jatropha curcas L. an intramolecular diester of 12-deoxy-16-hydroxyphorbol. Cancer Res 48:5800–5804

    CAS  Google Scholar 

  78. 78.

    Macneil A, Sumba OP, Lutzke ML, Moormann A, Richford R (2003) Activation of the Epstein–Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli. Brit J Cancer 88:1566–1569

    CAS  Google Scholar 

  79. 79.

    Wender P, Kee JM, Warrington JM (2008) Practical synthesis of Prostratin, DPP and their analogs, adjuvant leads against latent HIV. Science 320:649–652

    CAS  Google Scholar 

  80. 80.

    Haas W, Mittelbach M (2000) Detoxification experiments with the seed oil from Jatropha curcas L. Ind Crop Prod 12:111–118

    CAS  Google Scholar 

  81. 81.

    Aregheore EM, Becker K, Makkar HPS (2003) Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments and preliminary nutritional evaluation with rats. S Pac J Nat Sci 21:50–56

    Google Scholar 

  82. 82.

    Makkar HPS, Becker K (1997a) Jatropha curcas toxicity: identification of toxic principles. In: Fifth international symposium on poisonous plants, San Angelo, Texas, USA, May 19–23, 1997

  83. 83.

    Chivandi E, Mtimuni JP, Read JS, Makuza SM (2004) Effect of processing method on phorbol ester concentration, total phenolics, trypsin inhibitor activity and the proximate composition of the Zimbabwean Jatropha curcas provenance: a potential livestock feed. Pak J Biol Sci 7:1001–1005

    Google Scholar 

  84. 84.

    Rakshit KD, Bhagya S (2007) Effect of processing methods on the removal of toxic and antinutritional constituents of Jatropha meal: a potential protein source. J Food Sci Technol 3:88–95

    Google Scholar 

  85. 85.

    Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819

    CAS  Google Scholar 

  86. 86.

    Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215

    CAS  Google Scholar 

  87. 87.

    Kumar V, Makkar HPS, Becker K (2008) Detoxification of Jatropha curcas seed meal and its utilization as a protein source in fish diet. 25th European Society for Comparative Physiology and Biochemistry (ESCPB) congress, September 7–11, Ravenna, Italy

  88. 88.

    Kumar V, Makkar HPS, Becker K (2010) Nutritional, physiological and haematological responses in rainbow trout (Oncorhynchus mykiss) juveniles fed detoxified Jatropha curcas kernel meal. Aquacult Nutr 17:451–467

    Google Scholar 

  89. 89.

    Kumar V, Makkar HPS, Becker K (2011) Detoxified Jatropha curcas kernel meal as a dietary protein source: growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquacult Nutr 17:313–326

    CAS  Google Scholar 

  90. 90.

    Adam SEI (1974) Toxic effects of Jatropha curcas in mice. Toxicology 2:67–76

    CAS  Google Scholar 

  91. 91.

    Ahmed OMM, Adam SEI (1979) Effects of Jatropha curcas on calves. Vet Pathol 16:476–482

    CAS  Google Scholar 

  92. 92.

    El-Badwi SMA, Adam SEI, Hapke HJ (1995) Comparative toxicity of Ricinus communis and Jatropha curcas in brown hisex chicks. Dtsch Tierarztl Wochenschr 102:75–77

    CAS  Google Scholar 

  93. 93.

    Abd-Elhamid HF (2004) Investigation of induced biochemical and histopathological parameters of acetonitrile extract of Jatropha curcas in albino rats. J Egypt Soc Parasitol 34:397–406

    Google Scholar 

  94. 94.

    Li CY, Devappa RK, Liu JX, Lv JM, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625

    CAS  Google Scholar 

  95. 95.

    Abdelgadir WS, Onsa TO, Ali WEM, El-Badwi SMA, Adam SE (2003) Comparative toxicity of Croton macrostachys, Jatropha curcas and Piper abyssinica seeds in Nubian goats. Small Ruminant Res 48:61–67

    Google Scholar 

  96. 96.

    Rakshit KD, Bhagya S (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88:911–919

    Google Scholar 

  97. 97.

    Chhabra SC, Mahunnah RL, Mshiu EN (1990) Plants used in traditional medicine in eastern Tanzania III. Angiosperms (Euphorbiaceae to Menispermaceae). J Ethnopharmacol 28:255–283

    CAS  Google Scholar 

  98. 98.

    Nath LK, Dutta SK (1997) Acute toxicity studies and wound healing response of curcain, a proteolytic enzyme extracted from latex of Jatropha curcas L. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. DBV-Verlag für die Technische Universität Graz, Graz, pp 82–86

    Google Scholar 

  99. 99.

    Van den Berg AJJ, Horsten SFAJ, Kettenes-van den Bosch JJ, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP (1995) Curcacycline A—a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358:215–218

    Google Scholar 

  100. 100.

    Singh B, Bhat TK, Singh B (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 51:5579–5597

    CAS  Google Scholar 

  101. 101.

    Shimada T (2006) Salivary proteins as a defence against dietary tannins. J Chem Ecol 32:1149–1163

    CAS  Google Scholar 

  102. 102.

    Li H, Wang Z (2003) Review in the studies on tannins activity of cancer prevention and anticancer. Zhong-Yao-Cai 26:444–448

    Google Scholar 

  103. 103.

    Kam PCA, Liew S (2002) Traditional Chinese herbal medicine and anesthesia. Anaesthesia 57:1083–1089

    CAS  Google Scholar 

  104. 104.

    Hodek P, Trefil P, Stiborova M (2002) Flavonoids—potent and versatile biologically active compounds interacting with cytochrome P450. Chem Biol Interact 139:1–21

    CAS  Google Scholar 

  105. 105.

    Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi Gowda CL (2009) Biology and genetic improvement of Jatropha curcas L.—a review. Appl Energy 87:732–742

    Google Scholar 

  106. 106.

    Tang Z, Wang L, Yang J (2007) Transesterification of the crude Jatropha curcas L. oil catalyzed by micro-NaOH in supercritical and subcritical methanol. Eur J Lipid Sci Technol 109:585–590

    CAS  Google Scholar 

  107. 107.

    Tapanes NCO, Aranda DAG, Carneiro JWM, Antunes OAC (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295

    Google Scholar 

  108. 108.

    Chitra P, Venkatachalam P, Sampathrajan A (2005) Optimisation of experimental procedure for biodiesel production from alkaline-catalysed transesterification of Jatropha curcas oil. Energy Sustain Dev 9:13–18

    Google Scholar 

  109. 109.

    Berchmans HJ, Morishita K, Takarada T (2010) Kinetic study of hydroxide catalyzed methanolysis of Jatropha curcas—waste food oil mixture for biodiesel production. Fuel. doi:10.1016/j.fuel.2010.01.017

    Google Scholar 

  110. 110.

    Zhu H, Wu Z, Chen Y, Zhang P, Duan S, Liu X, Mao Z (2006) Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin J Catal 27:391–396

    CAS  Google Scholar 

  111. 111.

    Jain S, Sharma MP (2010) Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresour Technol 101:7701–7706

    CAS  Google Scholar 

  112. 112.

    Jain S, Sharma MP (2010) Biodiesel production from Jatropha oil. Renew Sust Energy Rev 14:3140–3147

    CAS  Google Scholar 

  113. 113.

    Patil PD, Deng S (2009) Optimization of biodiesel production from edible and nonedible vegetable oils. Fuel 88:1302–1306

    CAS  Google Scholar 

  114. 114.

    Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B (2009) Production of biodiesel from Jatropha curcas L. Oil Comput Chem Eng 33:1091–1096

    CAS  Google Scholar 

  115. 115.

    Corro G, Tellez N, Ayala E, Marinez-Ayala A (2010) Two-step biodiesel production from Jatropha curcas crude oil using SiO2. HF solid catalyst for FFA esterification step. Fuel 89:2815–2821

    CAS  Google Scholar 

  116. 116.

    Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414

    CAS  Google Scholar 

  117. 117.

    Su E, Wei D (2008) Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using solvent engineering method. J Mol Catal B Enzym 55:118–125

    CAS  Google Scholar 

  118. 118.

    Juan JC, Kartika DA, Wu TY, Hin TYY (2011) Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102:452–460

    CAS  Google Scholar 

  119. 119.

    DBTIndia(2007) http://dbtindia.nic.in/Energy_bioscience/presentations/TS_4_Dr%20Nutan%20Kaushik_TERI_N%20Delhi.pdf

  120. 120.

    Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK, Kumar M, Singh R (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7:4230–4243

    CAS  Google Scholar 

  121. 121.

    Padmidiamarri DVNS, Pandya N, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP: genetic divergence and phylogenic analysis of genus Jatropha. Mol Biol Rep 36:901–907

    Google Scholar 

  122. 122.

    Reddy MP, Chikara J, Potolia JS, Ghosh A (2007) Genetic improvement of Jatropha curcas adaptability and oil yield. In: Expert seminar on Jatropha curcas L. agronomy and genetics, 26–28 March, 2007. FACT Foundation, Wageningen

  123. 123.

    Montes LR, Azurdia C, Jongschaap REE, Van Loo EN, Barillas E, Visser R, Mejia L (2008) Global evaluation of genetic variability in Jatropha curcas: http://www.pri.wur.nl/NR/rdonlyres/90AF26A1-47D5-4F2F-9E96-D413C2933685/70112/PosterMontesHR.pdf

  124. 124.

    Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823

    CAS  Google Scholar 

  125. 125.

    Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R (2011) EST-derived SSR markers in Jatropha curcas L., development, characterization, polymorphism and transferability across the species/genera. Tree Genet Genomes 7:207–219

    Google Scholar 

  126. 126.

    Hemalatha A, Radhakrishnaiah M (1993) Chemosystematics of Jatropha. J Econ Taxonom Bot 17:75–77

    Google Scholar 

  127. 127.

    Mitra CR, Bhatnagar SC, Sinha MK (1970) Chemical examination of J. curcas. Ind J Chem 8:1047

    CAS  Google Scholar 

  128. 128.

    Igbinosa OO, Igbinosa EO, Aiyegore OA (2009) Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas L. Afr J Pharm Pharmacol 3:058–062

    Google Scholar 

  129. 129.

    Khafagy SM, Mohamed YA, Abdel NA, Mahmoud ZF (1977) Phytochemical study of Jatropha curcas. Plant Med 31:274–277

    CAS  Google Scholar 

  130. 130.

    Hufford CD, Oguntimein BO (1987) Non-polar constituents of Jatropha curcas. Lloydia 41:161–165

    Google Scholar 

  131. 131.

    Akinpelu DA, Aiyegoro OA, Okoh AI (2009) The bioactive potentials of two medicinal plants commonly used as folklore remedies among some tribes in West Africa. Afr J Biotechnol 8:1660–1664

    CAS  Google Scholar 

  132. 132.

    Nath LK, Dutta SK (1991) Extraction and purification of curcain, a protease from the latex of Jatropha curcas L. J Pharm Pharmacol 43:111–114

    CAS  Google Scholar 

  133. 133.

    Staubmann R, Ncube I, Gubitz GM, Steiner W, Read JS (1999) Esterases and lipase activity in Jatropha curcas L. seeds. J Biotechnol 75:117–126

    CAS  Google Scholar 

  134. 134.

    Aregheore EM, Makkar HPS, Becker K (1997) Lectin activity in toxic and non-toxic varieties of J. curcas using a latex agglutination test. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. DBV, Graz, pp 65–69

    Google Scholar 

  135. 135.

    Wink M, Koschmieder C, Sauerwein M, Sporer F (1997) Phorbol esters of J. curcas-biological activities and potential applications. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. DBV, Graz, pp 160–166

    Google Scholar 

  136. 136.

    Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, Okamoto KT, Clardy J (1986) Isolation and structure determination of four novel diterpenes of Jatropha curcas. Tetrahed Lett 27:2439–2442

    CAS  Google Scholar 

  137. 137.

    Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (+)-Jatropha, (+)-marmesin, propacin and Jatrophin from the roots of Jatropha curcas (Euphorbiaceae). J Sci Soc Thail 20:73–83

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Jatropower AG-MRP, Switzerland for the financial support extended.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Perumal Siddhuraju.

About this article

Cite this article

Nithiyanantham, S., Siddhuraju, P. & Francis, G. Potential of Jatropha curcas as a Biofuel, Animal Feed and Health Products. J Am Oil Chem Soc 89, 961–972 (2012). https://doi.org/10.1007/s11746-012-2012-3

Download citation

Keywords

  • Jatropha curcas
  • Biodiesel
  • Seed cake
  • Phorbol esters
  • Antinutrients
  • Genetic diversity