Journal of the American Oil Chemists' Society

, Volume 89, Issue 1, pp 97–102 | Cite as

Modulation of the Selectivity of Immobilized Lipases by Chemical and Physical Modifications: Release of Omega-3 Fatty Acids from Fish Oil

  • Gloria Fernández-Lorente
  • Lorena Betancor
  • Alfonso V. Carrascosa
  • Jose M. Palomo
  • Jose M. Guisan
Original Paper

Abstract

Three different lipases (from Candida antarctica fraction B (CALB), Thermomyces lanuginose (TLL), and Rhizomucor miehei (RML)) were immobilized by two different methods, immobilization on CNBr-activated Sepharose via a mild covalent immobilization or adsorption onto hydrophobic supports (Octyl-Sepharose). These immobilized preparations were chemically and physically modified on the protein surface (enzyme carboxylic groups with ethylenediamine, amino groups with succinic anhydride, or coating with polyethyleneimine).The activity and selectivity in the production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by enzymatic hydrolysis of sardine oil were evaluated. Activity and selectivity were dependent on the different lipases, the immobilization protocols, the modification methods, and the pH of the reaction media. The selectivity (EPA/DHA ratio) of RML immobilized on CNBr-activated Sepharose was increased after succinylation from 7.5 to 34 at pH 6.0. The selectivity of octyl-RML improved from 1.5 to 8.5 when pH was increased from 6 to 8. The selectivity and activity of octyl-TLL increased twofold after PEI coating at pH 6. The properties of CAL-B derivatives were slightly altered after modification.

Keywords

Omega-3 fatty acids Lipases Chemical modification EPA DHA 

References

  1. 1.
    Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289CrossRefGoogle Scholar
  2. 2.
    Manerba A, Vizzardi E, Metra M, Dei Cas L (2010) N-3 PUFA and cardiovascular disease prevention. Futur Cardiol 6:343–350CrossRefGoogle Scholar
  3. 3.
    Phillips MA (2010) Omega-3 fatty acids, cognitive impairment and Alzheimer’s disease. Rev Clin Gerontol 20:219–238CrossRefGoogle Scholar
  4. 4.
    Serini S, Piccioni E, Calviello G (2009) Dietary n-3 PUFA vascular targeting and the prevention of tumor growth and age-related macular degeneration. Curr Med Chem 16:4511–4526CrossRefGoogle Scholar
  5. 5.
    McMahon A, Kedzierski W (2010) Polyunsaturated very-long-chain C28–C36 fatty acids and retinal physiology. Br J Ophthalmol 94:1127–1132CrossRefGoogle Scholar
  6. 6.
    Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B Enzym 66:15–32CrossRefGoogle Scholar
  7. 7.
    Nagao T, Watanabe Y, Maruyama K, Momokawa Y, Kishimoto N, Shimada Y (2011) One-pot enzymatic synthesis of docosahexaenoic acid-rich triacylglycerols at the sn-1(3) position using by-product from selective hydrolysis of tuna oil. N Biotechnol 28:7–13CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhao M, Song K, Wang L, Tang S, Riley WW (2010) Partial hydrolysis of soybean oil by phospholipase A1 (Lecitase Ultra). Food Chem 121:1066–1072CrossRefGoogle Scholar
  9. 9.
    Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990) Nature 43:767–770CrossRefGoogle Scholar
  10. 10.
    Sarda L, Desnuelle P (1958) Action de la lipase pancréatique sur les esters en émulsion. Biochim Biphys Acta 30:513–521CrossRefGoogle Scholar
  11. 11.
    Aloulou A, Rodriguez JA, Fernandez S, van Oosterhout D, Puccinelli D, Carrière F (2006) Exploring the specific features of interfacial enzymology based on lipase studies. Biochim Biophys Acta 176:1013–1995Google Scholar
  12. 12.
    Palomo JM, Peña M, Fernández-Lorente G, Mateo C, Pisabarro AG, Fernández-Lafuente R, Ramirez L, Guisán JM (2003) Solid phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules 4:204–210CrossRefGoogle Scholar
  13. 13.
    Palomo JM, Ortiz C, Fuentes M, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2004) Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. J Chromatogr A 1038:267–273CrossRefGoogle Scholar
  14. 14.
    Fernández-Lafuente R, Armisen P, Sabuquillo P, Fernández-Lorente G, Guisán JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids 93:185–197CrossRefGoogle Scholar
  15. 15.
    Chaubey A, Parshad R, Koul S, Taneja SC, Qazi GN (2006) Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase: kinetic resolution of fluoxetine intermediate. J Mol Catal B Enzym 42:39–44CrossRefGoogle Scholar
  16. 16.
    Yu H, Wu J, Chi BC (2004) Enhanced activity and enantioselectivity of Candida rugosa lipase immobilized on macroporous adsorptive resins for ibuprofen resolution. Biotechnol Lett 26:629–633CrossRefGoogle Scholar
  17. 17.
    Palomo JM (2008) Lipases enantioselectivity alteration by immobilization techniques. Curr Bioact Compd 4:126–138CrossRefGoogle Scholar
  18. 18.
    Palomo JM, Fernández-Lorente G, Guisan JM, Fernández-Lafuente R (2007) Modulation of the immobilized lipase enantioselectivity via chemical amination. Adv Synth Catal 349:1119–1127CrossRefGoogle Scholar
  19. 19.
    Hoare DG, Koshland DE (1966) A procedure for the selective modification of carboxyl groups in proteins. J Am Chem Soc 88:2057–2058CrossRefGoogle Scholar
  20. 20.
    Fernández-Lorente G, Pizarro C, López-Vela D, Betancor L, Carrascosa AV, Pessela B, Guisan JM (2010) Hydrolysis of fish oil by lipases immobilized inside porous supports. J Am Oil Chem Soc 2011 88:819–826CrossRefGoogle Scholar
  21. 21.
    Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486–493CrossRefGoogle Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • Gloria Fernández-Lorente
    • 1
    • 2
  • Lorena Betancor
    • 3
  • Alfonso V. Carrascosa
    • 2
  • Jose M. Palomo
    • 1
  • Jose M. Guisan
    • 1
  1. 1.Departamento de BiocatálisisInstituto de Catálisis, CSICMadridSpain
  2. 2.Departamento de Biotecnología y Microbiología de los alimentosInstituto de Investigación en Ciencias de la Alimentación, CSICSevillaSpain
  3. 3.Universidad ORTMontevideoUruguay

Personalised recommendations