Cross-Linking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil Catalyzed by RML

  • Gloria Fernandez-Lorente
  • Marco Filice
  • Dolores Lopez-Vela
  • Carolina Pizarro
  • Lorena Wilson
  • Lorena Betancor
  • Yanoska Avila
  • Jose M. GuisanEmail author
Original Paper


Organic cosolvents may improve the properties of lipases (e.g., selectivity); however, organic cosolvents also promote the desorption of the enzyme from its hydrophobic supports. In this study, adsorbed lipase molecules were cross-linked with polyfunctional polymers, such as aldehyde-dextrans, to prevent this desorption. The desorption of adsorbed lipases was greatly reduced by optimizing the polymer size, polymer/lipase ratio, and cross-linking time. More than 95% of cross-linked, immobilized Rhizomucor miehei lipase (RML) remained adsorbed on the support after washing with cosolvents or detergents. This new, immobilized RML preparation mediated the hydrolysis of sardine oil in the presence of organic cosolvents. The presence of cosolvents promoted small losses of hydrolytic activity. Interestingly, however, 50% 2-propanol also promoted increased selectivity in the release of eicosapentaenoic acid (EPA) in relation to docosahexaenoic acid (DHA). An EPA/DHA ratio of 4:1 in the absence of 2-propanol was increased to a ratio of 22:1 in the presence of 2-propanol. The new RML derivatives were relatively stable under the selected reaction conditions. Their overall half-life was 100 h, but, in a second inactivation phase (below 60% of remaining activity), it took 600 h to reach 30% of their remaining activity.


Rhizomucor miehei lipase Enzyme immobilization Polyfunctional polymers Selective release of eicosapentenoic acid Hydrolysis of sardine oil Omega-3 fatty acids 



This work was sponsored by the Spanish Ministry of Science and Innovation (project AGL-2009-07526) and the Comunidad Autonoma de Madrid (Project S0505/PPQ/03449). We gratefully recognize the Spanish Ministry of Science and Innovation for the “Ramón y Cajal” contract for Dr. Fernandez-Lorente and Dr. Betancor.


  1. 1.
    Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6:145–150CrossRefGoogle Scholar
  2. 2.
    Fernández-Lorente G, Pizarro C, López-Vela D, Betancor L, Carrascosa AC, Pessela B, Guisan M (2010) Hydrolysis of fish oil by lipases immobilized inside porous supports. J Am Oil Chem Soc (Submitted)Google Scholar
  3. 3.
    Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195CrossRefGoogle Scholar
  4. 4.
    Akai S, Kita Y (2007) Recent progress on the lipase-catalyzed asymmetric syntheses. J Synth Org Chem 65:772–782Google Scholar
  5. 5.
    Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Menge U (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770CrossRefGoogle Scholar
  6. 6.
    Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase–inhibitor complex. Nature 351:491–494CrossRefGoogle Scholar
  7. 7.
    Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992) Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532–1541CrossRefGoogle Scholar
  8. 8.
    Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486–493CrossRefGoogle Scholar
  9. 9.
    Palomo JM, Peñas MM, Fernández-Lorente G, Mateo C, Pisabarro AG, Fernández-Lafuente R, Ramírez L, Guisán JM (2003) Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules 4(2):204–210CrossRefGoogle Scholar
  10. 10.
    Fernandez L, Banuelos O, Zafra A, Ronchel C, Perez-Victoria I, Morales JC, Velasco J, Adrio JL (2008) Alteration of substrate specificity of Galactomyces geotrichum BT107 lipase I on eicosapentaenoic acid-rich triglycerides. Biocatal Biotransform 26(4):296–305CrossRefGoogle Scholar
  11. 11.
    Heird WC (2001) The role of polyunsaturated fatty acids in term and preterm infants and breastfeeding mothers. Pediatr Clin North Am 48(1):173–188CrossRefGoogle Scholar
  12. 12.
    Saremi A, Arora R (2009) The utility of omega-3 fatty acids in cardiovascular disease. Am J Ther 16(5):421–436CrossRefGoogle Scholar
  13. 13.
    Fernández-Lorente G, Palomo JM, Cabrera Z, Fernández-Lafuente R, Guisán JM (2007) Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnol Bioeng 97:242–250CrossRefGoogle Scholar
  14. 14.
    Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fuentes M, Guisan JM (2003) Modulation of Mucor miehei lipase properties via directed immobilization on different hetero-functional epoxy resins: hydrolytic resolution of (R, S)-2-butyroyl-2-phenylacetic acid. J Mol Catal B Enzym 21(4–6):201–210CrossRefGoogle Scholar
  15. 15.
    Palomo JM, Segura RL, Fernández-Lorente G, Pernas M, Rua ML, Guisán JM, Fernández-Lafuente R (2004) Purification, immobilization, and stabilization of a lipase from Bacillus thermocatenulatus by interfacial adsorption on hydrophobic supports. Biotechnol Progr 20(2):630–635CrossRefGoogle Scholar
  16. 16.
    Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58(5):486–493CrossRefGoogle Scholar
  17. 17.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1–2):248–254CrossRefGoogle Scholar
  18. 18.
    Guisán JM, Rodríguez V, Rosell CM, Soler G, Bastida A, Fernández-Lafuente R (1997) Stabilization of immobilized enzymes by chemical modification with polyfunctional macromolecules. In: Bickerstaff GF (ed) Methods in biotechnology 1 immobilization of enzymes and cells. Humana Press, NJ, pp 289–297Google Scholar
  19. 19.
    Fernandez-Lorente G, Godoy CA, Mendes AA, Lopez-Gallego F, Grazu V, de las Rivas B, Palomo JM, Hermoso J, Fernandez-Lafuente R, Guisan JM (2008) Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules 9(9):2553–2561CrossRefGoogle Scholar
  20. 20.
    Lienqueo ME, Mahn A, Salgado JC, Asenjo JA (2007) Current insights on protein behaviour in hydrophobic interaction chromatography. J Chromat B 849:53–68CrossRefGoogle Scholar
  21. 21.
    Rosell CM, Terreni M, Fernandez-Lafuente R, Guisan JM (1998) A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb Technol 23(1–2):64–69CrossRefGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Gloria Fernandez-Lorente
    • 1
  • Marco Filice
    • 2
  • Dolores Lopez-Vela
    • 2
  • Carolina Pizarro
    • 2
    • 3
  • Lorena Wilson
    • 3
  • Lorena Betancor
    • 4
  • Yanoska Avila
    • 2
  • Jose M. Guisan
    • 2
    Email author
  1. 1.Departamento de MicrobiologiaInstituto de Fermentaciones IndustrialesMadridSpain
  2. 2.Departamento de BiocatálisisInstituto de CatálisisMadridSpain
  3. 3.School of Biochemical EngineeringUniversidad Católica de ValparaísoValparaisoChile
  4. 4.Madrid Institute for Advanced StudiesMadridSpain

Personalised recommendations