Skip to main content
Log in

Discrimination of Chain Positions in Mixed Short/Long-Chain Glycerophosphocholines by NMR Chemical Shift Variations

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The synthesis of a series of (1,2-) mixed short/long-chain glycerophosphocholines has been performed. Starting from glycerophosphorylcholine (GPC), and using regioselective acylation in the presence of dibutyltin oxide, a set of high-purity isomeric mixed-chain phospholipids was obtained. This has allowed the development of a simple NMR method for the structural determination of the isomeric 1(2)-short-2(1)-long-diacylglycerophosphocholines. The method is based on the observation that selected protons in the two series of isomeric phospholipids undergo systematic chemical shift variations Δδ that can be ascribed to the acyl substituents on the glycerol backbone. The observed patterns can be exploited as a simple method for the discrimination of regioisomeric unsymmetrical 1,2-diacylglycerophosphocholines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Birgbauer E, Chun J (2006) New developments in the biological functions of lysophospholipids. Cell Mol Life Sci 63:2695–2701

    Article  CAS  Google Scholar 

  2. Goetzl EJ, An S (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 12:1589–159

    CAS  Google Scholar 

  3. Barenholz Y, Cevc G (2000) Structure and properties of membranes. In: Baskin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New York, pp 171–242

  4. Fuller N, Rand R (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81(1):243–254

    Google Scholar 

  5. Muresan AS, Diamant H, Lee KY (2001) Effect of temperature and composition on the formation of nanoscale compartments in phospholipid membrane. J Am Chem Soc 123:6951–6952

    Article  CAS  Google Scholar 

  6. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipids receptors: signalling and biology. Annu Rev Biochem 73:321–354

    Article  CAS  Google Scholar 

  7. Bernoud N, Fenard L, Molière P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J (1999) Preferential transfer of 2-docosahexaneoyl-1-lysophosphatidylcholine through an in vitro blood–brain barrier over unesterified docosahexaenoic acid. J Neurochem 72:338–345

    Google Scholar 

  8. Rosseto R, Hajdu J (2005) A rapid and efficient method for migration-free acylation of lysophospholipids: synthesis of phosphatidylcholines with sn-2-chain terminal reporter groups. Tetrahedron Lett 46:2941–2944

    Article  CAS  Google Scholar 

  9. Bayon Y, Croset M, Lagarde M, Lecerf J, Thies F, Frank T, Tayot JL, Chirouze V (1997) Docosahexaenoic acid-containing (lyso)phosphatidylcholines for medicaments for treating cardiovascular disease and cerebral essential fatty acid deficiency. US Patent 5,654,290

  10. D’Arrigo P, Fasoli E, Pedrocchi-Fantoni G, Rossi C, Saraceno C, Tessaro D, Servi S (2007) A practical selective synthesis of mixed short/long chains glycerophosphocholines. Chem Phys Lipids 147:113–118

    Article  CAS  Google Scholar 

  11. D’Arrigo P, Servi S (1997) Using phospholipases for phospholipids modification. Trends Biotechnol 15:90–96

    Article  CAS  Google Scholar 

  12. Mustratnta A, Forssell P, Poutanen K (1995) Comparison of lipases and phospholipases in the hydrolysis of phospholipids. Process Biochem 30:393–401

    Article  Google Scholar 

  13. Six DA, Edward EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    CAS  Google Scholar 

  14. Beermann C, Mobius M, Winterling N, Schmitt JJ, Boehm G (2005) sn-Position determination of phospholipid-linked fatty acids derived from erythrocytes by liquid chromatography electrospray ionization mass spectrometry. Lipids 40:211–218

    Google Scholar 

  15. Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33:23–35

    Article  CAS  Google Scholar 

  16. Fasoli E, Arnone A, Caligiuri A, D’Arrigo P, de Ferra L, Servi S (2006) Tin-mediated synthesis of lyso-phospholipids. Org Biomol Chem 4:2974–2978

    Article  CAS  Google Scholar 

  17. Haasnoot CAG, de Leeuw FAAM, Altona C (1980) The relation between proton–proton NMR coupling constants and substituent electronegativities. I. An empirical generalization of the Karplus equation. Tetrahedron 36:2783–2792

    Article  CAS  Google Scholar 

  18. Martin SF, Pitzer GE (2000) Solution conformations of short-chain phosphatidylcholine substrates of the phosphatidylcholine-preferring PLC of Bacillus cereus. Biochim Biophys Acta 1464:104–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola D’Arrigo.

About this article

Cite this article

D’Arrigo, P., Mele, A., Rossi, C. et al. Discrimination of Chain Positions in Mixed Short/Long-Chain Glycerophosphocholines by NMR Chemical Shift Variations. J Am Oil Chem Soc 85, 1005–1011 (2008). https://doi.org/10.1007/s11746-008-1280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-008-1280-4

Keywords

Navigation