Skip to main content

Efficient Immobilization of Lecitase in Gelatin Hydrogel and Degumming of Rice Bran Oil Using a Spinning Basket Reactor

Abstract

Immobilization of Lecitase (Phospholipase A1) in gelatin hydrogel and its stability is studied with a view to utilizing the immobilized enzyme for degumming rice bran oil. Excellent retention of enzyme activity (>80%) is observed in hydrogel containing 43.5% gelatin crosslinked with glutaraldehyde. Compared to the free enzyme which has a broad pH-activity profile (6.5–8.0), the activity of the immobilized enzyme is strongly dependent on pH and has a pH-optimum of pH 7.5. The optimum temperature of enzyme activity increases from 37 to 50 °C. Compared to the free enzyme which loses all its activity in 72 h at 50 °C, the immobilized enzyme retains its activity in full. The immobilized enzyme has been used efficiently in a spinning basket bioreactor for the degumming of rice bran oil with 6 recycles without loss of enzyme activity. The phosphorus content of the oil decreases from 400 ppm to 50–70 ppm in each cycle. After charcoal treatment and dewaxing, a second enzymatic treatment brings down the phosphorus content to <5 ppm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Orthoefer FT (1996) Rice bran oil: healthy lipid source. Food Tech 50:62–64

    CAS  Google Scholar 

  2. Xu Z, Godber JS (1999) Purification and identification of components of γ-oryzanol in rice bran oil. J Agr Food Chem 47:2724–2728

    Article  CAS  Google Scholar 

  3. Kim J, Godber J, King J, Prinyawiwatkul W (2001) Inhibition of cholesterol autoxidation by the nonsaponifiable fraction in rice bran in an aqueous model system. J Am Oil Chem Soc 78:685–689

    Article  CAS  Google Scholar 

  4. Shin TS, Godber JS, Martin DE, Wells JH (1997) Hydrolytic stability and changes in E vitamers and oryzanol of extruded rice bran during storage. J Food Sci 62:704–708

    Article  CAS  Google Scholar 

  5. Deckere EAM, Korver O (1996) Minor constituents of rice bran oil as functional foods. Nutr Rev 54:20S–126S

    Google Scholar 

  6. Eitenmiller RR (1997) Vitamin E content of fats and oils: nutritional implications. Food Tech 51:78–81

    CAS  Google Scholar 

  7. Qureshi AA, Bradlow BA, Salser WA, Brace LD (1997) Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters of hypercholesterolemic humans. Nutr Biochem 8:290–298

    Article  CAS  Google Scholar 

  8. Rodrigues CEC, Antoniassi R, Meirelles AJA (2003) Equilibrium data for the system rice bran oil + fatty acids + ethanol + water at 298.2 K. J Chem Eng Data 48:367–373

    Article  CAS  Google Scholar 

  9. Cvengros J (1995) Physical refining of edible oils. J Am Oil Chem Soc 72:1193–1196

    Article  CAS  Google Scholar 

  10. Chakrabarti PP, Rao BVSK, Roy SK, Prabhavati Devi BLA, Narayana K, Rani P, Vandana V, Kalyani C, Gadam K, Kale V, Prasad RBN (2004) Process for the pre-treatment of vegetable oils for physical refining. United States Patent Application 20040005399

  11. Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340

    Article  CAS  Google Scholar 

  12. Compendium of food additive specifications—Addendum 13, FAO Corporate Document Repository (2005). Available at: http://www.fao.org/docrep/008/a0044e/a0044e05.htm

  13. Madoery RR, González GC, Fidelio GD (1995) Bioconversion of phospholipids by immobilized phospholipase A2. J Biotechnol 40:145–153

    Article  CAS  Google Scholar 

  14. Madoery RR, Fidelio GD (2001) A simple method to obtain a covalent immobilized phospholipase A2. Bioorg Med Chem Lett 11:1663–1664

    Article  CAS  Google Scholar 

  15. Kim J, Lee CS, Oh J, Kim BG (2001) Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzyme Microb Technol 29:587–592

    Article  CAS  Google Scholar 

  16. Chen JP, Chen JY (1998) Preparation and characterization of immobilized phospholipase A2 on chitosan beads for lowering serum cholesterol concentration. J Mol Catal B Enzym 5:483–490

    Article  CAS  Google Scholar 

  17. Teke M, Onal S, Kilinc A, Telefoncu A (2003) Immobilization of phospholipase A2 on porous glass and its application for lowering serum cholesterol concentration. Artif Cells Blood Substit Immobil Biotechnol 31:467–478

    Article  CAS  Google Scholar 

  18. Yaqoob M, Nabi A, Masoom-Yasinzai M (2001) Bioconversion of phosphatidylcholine to phosphatidylserine using immobilized enzyme mini-columns. Process Biochem 36:1181–1185

    Article  CAS  Google Scholar 

  19. Pantazi D, Drougas E, Loppinet B, Tellis C, Kosmas AM, Lekka ME (2006) Hydrolysis by phospholipase D of phospholipids in solution state or adsorbed on a silica matrix. Chem Phys Lipids 139:20–31

    Article  CAS  Google Scholar 

  20. Shen Z, Cho W (1995) Highly efficient immobilization of phospholipase A2 and its biomedical applications. J Lipid Res 36:1147–1151

    CAS  Google Scholar 

  21. Anthonsen T, D’Arrigo P, Pedrocchi-Fantoni G, Secundo F, Servi S, Sundby E (1999) Phospholipids hydrolysis in organic solvents catalysed by immobilised phospholipase C. J Mol Catal B Enzym 6:125–132

    Article  CAS  Google Scholar 

  22. Basheer S, Kaiyal M, Boltanski A (2006) Immobilization of compounds on polymer matrix. World patent application WO/2004/035773

  23. Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R (2007) Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase®. Ultra J Mol Catal B Enzym 47:99–104

    Article  CAS  Google Scholar 

  24. D’Souza SF (2002) Trends in immobilized enzyme and cell technology. Ind J Biotechnol 1:321–338

    Google Scholar 

  25. Fadnavis NW, Sheelu G, Mani Kumar B, Bhalerao MU, Deshpande AA (2003) Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnol Progr 19:557–564

    Article  CAS  Google Scholar 

  26. Othman SS, Basri M, Hussein MZ, Basyaruddin M, Rahman A, Rahman RNZA, Salleh AB, Jasmani H (2007) Production of highly enantioselective (−)-methyl butyrate using Candida rugosa lipase immobilized on epoxy-activated supports. Food Chem 106:437–443

    Article  CAS  Google Scholar 

  27. Fernández-Lorente G, Palomo JM, Cabrera Z, Guisán JM, Fernández-Lafuente R (2007) Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enz Microb Technol 41:565–569

    Article  CAS  Google Scholar 

  28. Yu D, Wang Z, Zhao L, Cheng Y, Cao S (2007) Resolution of 2-octanol by SBA-15 immobilized Pseudomonas sp. Lipase. J Mol Catal B Enzym 48:64–69

    Article  CAS  Google Scholar 

  29. Fadnavis NW, Koteshwar K (1999) An unusual reversible sol-gel transition phenomenon in organogels and its application for enzyme immobilization in gelatin membranes. Biotechnol Prog 15:98–104

    Article  CAS  Google Scholar 

  30. Haynes CA, Norde W (1995) Structures and stabilities of adsorbed polymers. J Colloid Interface Sci 169:313–328

    Article  CAS  Google Scholar 

  31. Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypothesis. Adv Polym Sci 79:1–63

    CAS  Google Scholar 

  32. Luisi PL, Magid L (1993) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit Rev Biochem 20:409–474

    Article  Google Scholar 

  33. Altun GD, Cetinus SK (2007) Immobilization of pepsin on chitosan beads. Food Chem 100:964–971

    Article  CAS  Google Scholar 

  34. Jiang B, Zhang Y (1993) Immobilization of catalase on crosslinked polymeric hydrogels: effect of anion on the activity of immobilized enzyme. Eur Polym J 29:1251–1254

    Article  CAS  Google Scholar 

  35. Abdel-Naby MA (1993) Immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Appl Biochem Biotechnol 38:69–81

    Article  CAS  Google Scholar 

  36. Carberry JJ (1964) Designing laboratory catalytic reactors. Ind Eng Chem 56:39–46

    Article  CAS  Google Scholar 

  37. Kenney CN, Sedriks W (1972) Effectiveness factors in a three-phase slurry reactor. Reduction of crotonaldehyde over a palladium catalyst. Chem Eng Sci 27:2029–2040

    Article  CAS  Google Scholar 

  38. Turek F, Winter H (1990) Effectiveness factor in a three-phase spinning basket reactor: hydrogenation of butyndiol. Ind Eng Chem Res 29:1546–1549

    Article  CAS  Google Scholar 

  39. Peratello S, Molinari M, Bellussi G, Perego C (1999) Olefins oligomerization: thermodynamics an kinetics over a mesoporous silica-alumina. Catal Today 52:271–277

    Article  CAS  Google Scholar 

  40. Schioppa E, Murena F, Gioia F (2001) Mass transfer resistance in the catalytic hydrodechlorination of polychlorobiphenyls. Experimental results of 2-chlorobiphenyl hydrodechlorination in a slurry reactor and in a rotating basket reactor. Ind Eng Chem Res 40:2011–2016

    Article  CAS  Google Scholar 

  41. Mahoney JA (1981) Laboratory reactors for mixed phase catalytic studies. NATO Adv Stud Inst Ser E 52:487–513

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. B. N. Prasad and Dr P. P. Chakrabarti, Lipid Science and Technology Division, IICT, Hyderabad, for helpful discussions; and CSIR, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin W. Fadnavis.

About this article

Cite this article

Sheelu, G., Kavitha, G. & Fadnavis, N.W. Efficient Immobilization of Lecitase in Gelatin Hydrogel and Degumming of Rice Bran Oil Using a Spinning Basket Reactor. J Am Oil Chem Soc 85, 739–748 (2008). https://doi.org/10.1007/s11746-008-1261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-008-1261-7

Keywords

  • Phospholipase A1
  • Immobilization
  • Gelatin
  • Rice bran oil
  • Degumming
  • Spinning basket reactor