Docosahexaenoic Acid is More Stable to Oxidation when Located at the sn-2 Position of Triacylglycerol Compared to sn-1(3)

Abstract

Regio-isomeric effects on the oxidative stability of triacylglycerols (TAG) containing docosahexaenoic acid (DHA) were investigated using two pairs of regio-isomerically pure TAG, namely 1,3-dihexadecanoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PDP)/1,2-dihexadecanoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PPD) and 1,3-dioctadecenoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (ODO)/1,2-dioctadecenoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (OOD) where P, O, and D represent palmitic acid, oleic acid, and DHA respectively. Each pair of regio-isomers was subjected to accelerated auto-oxidation (at 40 or 50 °C inside a dark oven). In each case, the TAG oxidized more slowly when DHA was located at the sn-2 position (PDP and ODO) compared to the sn-1(3) position (PPD and OOD), as evidenced by slower development of peroxide value, slower depletion of DHA, and slower generation of secondary oxidation products propanal and trans, trans-2,4-heptadienal. The positional effect on auto-oxidation was more pronounced when DHA occurred in combination with oleic acid than with palmitic acid.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    von Schacky C, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315

    Article  CAS  Google Scholar 

  2. 2.

    Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459

    Article  CAS  Google Scholar 

  3. 3.

    Nettleton JA, Katz R (2005) N-3 Long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc 105:428–440

    Article  CAS  Google Scholar 

  4. 4.

    Lau FY, Hammond EG, Ross PF (1982) Effect of randomization on the oxidation of corn oil. J Am Oil Chem Soc 59:407–411

    Article  CAS  Google Scholar 

  5. 5.

    Park DK, Terao J, Matsushita S (1983) Influence of interesterification on the autoxidative stability of vegetable oils. Agric Biol Chem 47:121–123

    CAS  Google Scholar 

  6. 6.

    Wada S, Koizumi C (1986) Influence of random interesterification on the oxidation rate of soybean oil triglyceride. Yukagaku 35:549–553

    CAS  Google Scholar 

  7. 7.

    Ledochowska E, Wilczynska E (1998) Comparison of the oxidative stability of chemically and enzymatically interesterified fats. Fett Lipid 100:343–348

    Article  CAS  Google Scholar 

  8. 8.

    Park DK, Terao J, Matsushita S (1983) Influence of the positions of unsaturated acyl groups in glycerides on autoxidation. Agric Biol Chem 47:2251–2255

    CAS  Google Scholar 

  9. 9.

    Miyashita K, Frankel EN, Neff WE, Awl RA (1990) Autoxidation of polyunsaturated triacylglycerols III. Synthetic triacylglycerols containing linoleate and linolenate. Lipids 25:48–53

    Article  CAS  Google Scholar 

  10. 10.

    Frankel EN, Selke E, Neff WE, Miyashita K (1992) Autoxidation of polyunsaturated triacylglycerols IV. Volatile decomposition products from triacylglycerols containing linoleate and linolenate. Lipids 27:442–446

    Article  CAS  Google Scholar 

  11. 11.

    Endo Y, Hoshizaki S, Fujimoto K (1997) Autoxidation of synthetic isomers of triacylglycerol containing eicosapentaenoic acid. J Am Oil Chem Soc 74:543–548

    Article  CAS  Google Scholar 

  12. 12.

    Fraser BH, Perlmutter P, Wijesundera C (2007) Practical synthesis of triacyleglycerol regioisomers containing long-chain polyunsaturated fatty acids. J Am Oil Chem Soc 84:11–21

    Article  CAS  Google Scholar 

  13. 13.

    Shen Z, Wijesundera C (2006) Evaluation of ethanolysis with immobilized Candida antarctica lipase for regiospecific analysis of triacylglycerols containing highly unsaturated fatty acids. J Am Oil Chem Soc 83:923–927

    Article  CAS  Google Scholar 

  14. 14.

    Bannon CD, Craske JD, Hilliker AE (1985) Analysis of fatty acid methyl esters with high accuracy and reliability IV. Fats with fatty acids containing four or more carbon atoms. J Am Oil Chem Soc 62:1501–1507

    Article  CAS  Google Scholar 

  15. 15.

    Shantha NC, Decker EA (1994) Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J AOAC Int 77:421–424

    CAS  Google Scholar 

  16. 16.

    Frankel EN, Neff WE, Miyashita K (1990) Autoxidation of polyunsaturated triacylglycerols II Trilinolenoylglycerol. Lipids 25:40–47

    Article  CAS  Google Scholar 

  17. 17.

    Boyd LC, King MF, Sheldon B (1992) A rapid method for determining the oxidation of n-3 fatty acids. J Am Oil Chem Soc 69:325–330

    Article  CAS  Google Scholar 

  18. 18.

    Frankel EN (1993) Formation of headspace volatiles by thermal decomposition of oxidized fish oils vs. oxidized vegetable oils. J Am Oil Chem Soc 70:767–772

    Article  CAS  Google Scholar 

  19. 19.

    Min H, McClements DJ, Decker EA (2003) Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J Agric Food Chem 51:1435–1439

    Article  CAS  Google Scholar 

  20. 20.

    Augustin MA, Sanguansri L, Bode O (2006) Maillard reaction products as encapsulants for fish oil powders. J Food Sci 71:E25–E32

    CAS  Article  Google Scholar 

  21. 21.

    Venkateshwarlu G, Let MB, Meyer AS, Jacobsen C (2004) Chemical and olfactometric characterization of volatile flavor compounds in a fish oil enriched milk emulsion. J Agric Food Chem 52:311–317

    Article  CAS  Google Scholar 

  22. 22.

    Aidos I, Jacobsen C, Jensen B, Luten Van Der Padt A, Boom RM (2002) Volatile oxidation products formed in crude herring oil under accelerated oxidative conditions. Eur J Lipid Technol 104:808–818

    Article  CAS  Google Scholar 

  23. 23.

    Lee H, Kizito SA, Weese SJ, Craig-Schmidt MC, Lee Y, Wei CI, An H (2003) Analysis of headspace volatile and oxidized volatile compounds in DHA-enriched fish oil on accelerated oxidative storage. J Food Sci 68:2169–2177

    Article  CAS  Google Scholar 

  24. 24.

    Lyberg AM, Adlercreutz P (2006) Monitoring monohydroperoxides in docosahexaenoic acid using high-performance liquid chromatography. Lipids 41:67–76

    Article  CAS  Google Scholar 

  25. 25.

    Neff WE, List GR (1999) Oxidative stability of natural and randomized high-palmitic- and high-stearic-acid oils from genetically modified soybean varieties. J Am Oil Chem Soc 76:825–831

    Article  CAS  Google Scholar 

  26. 26.

    Kimoto H, Endo Y, Fujimoto K (1994) Influence of interesterification on the oxidative stability of marine oil triacylglycerols. J Am Oil Chem Soc 71:469–473

    Article  CAS  Google Scholar 

  27. 27.

    Raghuveer KG, Hammond EG (1967) The influence of triglyceride structure on the rate of autoxidation. J Am Oil Chem Soc 44:239–243

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chakra Wijesundera.

About this article

Cite this article

Wijesundera, C., Ceccato, C., Watkins, P. et al. Docosahexaenoic Acid is More Stable to Oxidation when Located at the sn-2 Position of Triacylglycerol Compared to sn-1(3). J Am Oil Chem Soc 85, 543–548 (2008). https://doi.org/10.1007/s11746-008-1224-z

Download citation

Keywords

  • Auto-oxidation
  • Docosahexaenoic acid
  • Omega-3 fatty acid
  • Oxidative stability
  • Regio-isomer
  • Triacylglycerol