Advertisement

Docosahexaenoic Acid is More Stable to Oxidation when Located at the sn-2 Position of Triacylglycerol Compared to sn-1(3)

  • Chakra Wijesundera
  • Claudio Ceccato
  • Peter Watkins
  • Peter Fagan
  • Benjamin Fraser
  • Neeranat Thienthong
  • Patrick Perlmutter
Original Paper

Abstract

Regio-isomeric effects on the oxidative stability of triacylglycerols (TAG) containing docosahexaenoic acid (DHA) were investigated using two pairs of regio-isomerically pure TAG, namely 1,3-dihexadecanoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PDP)/1,2-dihexadecanoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PPD) and 1,3-dioctadecenoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (ODO)/1,2-dioctadecenoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (OOD) where P, O, and D represent palmitic acid, oleic acid, and DHA respectively. Each pair of regio-isomers was subjected to accelerated auto-oxidation (at 40 or 50 °C inside a dark oven). In each case, the TAG oxidized more slowly when DHA was located at the sn-2 position (PDP and ODO) compared to the sn-1(3) position (PPD and OOD), as evidenced by slower development of peroxide value, slower depletion of DHA, and slower generation of secondary oxidation products propanal and trans, trans-2,4-heptadienal. The positional effect on auto-oxidation was more pronounced when DHA occurred in combination with oleic acid than with palmitic acid.

Keywords

Auto-oxidation Docosahexaenoic acid Omega-3 fatty acid Oxidative stability Regio-isomer Triacylglycerol 

References

  1. 1.
    von Schacky C, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315CrossRefGoogle Scholar
  2. 2.
    Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459CrossRefGoogle Scholar
  3. 3.
    Nettleton JA, Katz R (2005) N-3 Long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc 105:428–440CrossRefGoogle Scholar
  4. 4.
    Lau FY, Hammond EG, Ross PF (1982) Effect of randomization on the oxidation of corn oil. J Am Oil Chem Soc 59:407–411CrossRefGoogle Scholar
  5. 5.
    Park DK, Terao J, Matsushita S (1983) Influence of interesterification on the autoxidative stability of vegetable oils. Agric Biol Chem 47:121–123Google Scholar
  6. 6.
    Wada S, Koizumi C (1986) Influence of random interesterification on the oxidation rate of soybean oil triglyceride. Yukagaku 35:549–553Google Scholar
  7. 7.
    Ledochowska E, Wilczynska E (1998) Comparison of the oxidative stability of chemically and enzymatically interesterified fats. Fett Lipid 100:343–348CrossRefGoogle Scholar
  8. 8.
    Park DK, Terao J, Matsushita S (1983) Influence of the positions of unsaturated acyl groups in glycerides on autoxidation. Agric Biol Chem 47:2251–2255Google Scholar
  9. 9.
    Miyashita K, Frankel EN, Neff WE, Awl RA (1990) Autoxidation of polyunsaturated triacylglycerols III. Synthetic triacylglycerols containing linoleate and linolenate. Lipids 25:48–53CrossRefGoogle Scholar
  10. 10.
    Frankel EN, Selke E, Neff WE, Miyashita K (1992) Autoxidation of polyunsaturated triacylglycerols IV. Volatile decomposition products from triacylglycerols containing linoleate and linolenate. Lipids 27:442–446CrossRefGoogle Scholar
  11. 11.
    Endo Y, Hoshizaki S, Fujimoto K (1997) Autoxidation of synthetic isomers of triacylglycerol containing eicosapentaenoic acid. J Am Oil Chem Soc 74:543–548CrossRefGoogle Scholar
  12. 12.
    Fraser BH, Perlmutter P, Wijesundera C (2007) Practical synthesis of triacyleglycerol regioisomers containing long-chain polyunsaturated fatty acids. J Am Oil Chem Soc 84:11–21CrossRefGoogle Scholar
  13. 13.
    Shen Z, Wijesundera C (2006) Evaluation of ethanolysis with immobilized Candida antarctica lipase for regiospecific analysis of triacylglycerols containing highly unsaturated fatty acids. J Am Oil Chem Soc 83:923–927CrossRefGoogle Scholar
  14. 14.
    Bannon CD, Craske JD, Hilliker AE (1985) Analysis of fatty acid methyl esters with high accuracy and reliability IV. Fats with fatty acids containing four or more carbon atoms. J Am Oil Chem Soc 62:1501–1507CrossRefGoogle Scholar
  15. 15.
    Shantha NC, Decker EA (1994) Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J AOAC Int 77:421–424Google Scholar
  16. 16.
    Frankel EN, Neff WE, Miyashita K (1990) Autoxidation of polyunsaturated triacylglycerols II Trilinolenoylglycerol. Lipids 25:40–47CrossRefGoogle Scholar
  17. 17.
    Boyd LC, King MF, Sheldon B (1992) A rapid method for determining the oxidation of n-3 fatty acids. J Am Oil Chem Soc 69:325–330CrossRefGoogle Scholar
  18. 18.
    Frankel EN (1993) Formation of headspace volatiles by thermal decomposition of oxidized fish oils vs. oxidized vegetable oils. J Am Oil Chem Soc 70:767–772CrossRefGoogle Scholar
  19. 19.
    Min H, McClements DJ, Decker EA (2003) Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J Agric Food Chem 51:1435–1439CrossRefGoogle Scholar
  20. 20.
    Augustin MA, Sanguansri L, Bode O (2006) Maillard reaction products as encapsulants for fish oil powders. J Food Sci 71:E25–E32CrossRefGoogle Scholar
  21. 21.
    Venkateshwarlu G, Let MB, Meyer AS, Jacobsen C (2004) Chemical and olfactometric characterization of volatile flavor compounds in a fish oil enriched milk emulsion. J Agric Food Chem 52:311–317CrossRefGoogle Scholar
  22. 22.
    Aidos I, Jacobsen C, Jensen B, Luten Van Der Padt A, Boom RM (2002) Volatile oxidation products formed in crude herring oil under accelerated oxidative conditions. Eur J Lipid Technol 104:808–818CrossRefGoogle Scholar
  23. 23.
    Lee H, Kizito SA, Weese SJ, Craig-Schmidt MC, Lee Y, Wei CI, An H (2003) Analysis of headspace volatile and oxidized volatile compounds in DHA-enriched fish oil on accelerated oxidative storage. J Food Sci 68:2169–2177CrossRefGoogle Scholar
  24. 24.
    Lyberg AM, Adlercreutz P (2006) Monitoring monohydroperoxides in docosahexaenoic acid using high-performance liquid chromatography. Lipids 41:67–76CrossRefGoogle Scholar
  25. 25.
    Neff WE, List GR (1999) Oxidative stability of natural and randomized high-palmitic- and high-stearic-acid oils from genetically modified soybean varieties. J Am Oil Chem Soc 76:825–831CrossRefGoogle Scholar
  26. 26.
    Kimoto H, Endo Y, Fujimoto K (1994) Influence of interesterification on the oxidative stability of marine oil triacylglycerols. J Am Oil Chem Soc 71:469–473CrossRefGoogle Scholar
  27. 27.
    Raghuveer KG, Hammond EG (1967) The influence of triglyceride structure on the rate of autoxidation. J Am Oil Chem Soc 44:239–243CrossRefGoogle Scholar

Copyright information

© AOCS 2008

Authors and Affiliations

  • Chakra Wijesundera
    • 1
  • Claudio Ceccato
    • 1
  • Peter Watkins
    • 1
  • Peter Fagan
    • 1
  • Benjamin Fraser
    • 2
  • Neeranat Thienthong
    • 2
  • Patrick Perlmutter
    • 2
  1. 1.CSIRO Food Futures National Research Flagship and Food Science AustraliaWerribeeAustralia
  2. 2.School of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations