Skip to main content
Log in

Kinetics and quantitative structure-activity relationships for pseudomonas sp. Lipase-catalyzed hydrolysis of both monoesters and diesters of ethylene glycol

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The goal of this work is to study kinetics and quantitative structure-activity relationships for steady states of Pseudomonas sp. lipase-catalyzed hydrolysis of both diesters and monoesters of ethylene glycol. Based on the steady-state kinetics of the enzyme-catalyzed hydrolysis of the diesters of ethylene glycol, the diesters and the monoesters react simultaneously as soon as monoester has started to build up in the reaction medium. In other words, the apparent K m values of the diesters are the K m values of the diesters (K mA) plus the K m values of the monoesters (K mB), and all V max values are about the same. Moreover, the pH-stat titration curve of the enzyme-catalyzed hydrolysis of the diesters of ethylene glycol is initially hyperbolic, then there is a sharp falloff in the hydrolysis rate. The abrupt stoppage of the reaction (relaxation stage) may be due to the existence of two phases in the reaction medium, that is, the product (ethylene glycol) and the substrates (the diesters of ethylene glycol) are not miscible. Furthermore, quantitative structure-activity relationships for varied acyl groups of mono-and diesters of ethylene glycol are studied. The fact that both pK mA and pK mB values are linearly correlated with the hydrophobicity constant (π) but not with the electronic substituent constants (σ*) indicates that the affinity of these substrates for the enzyme depends only on the hydrophobicity of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boland, W., C. Frößl, and N. Lorenz, Esterolytic and Lipolytic Enzymes in Organic Synthesis, Synthesis 12:1049–1072 (1991).

    Article  Google Scholar 

  2. Theil, F., Lipase-Supported Synthesis of Biologically Active Compounds, Chem. Rev. 95:2203–2227 (1995).

    Article  CAS  Google Scholar 

  3. Drent, M.L., and E.A. Vanderveen, First Clinical Studies with Orlistat: A Short Review, Obes. Res. 3:S623-S625 (1995).

    Google Scholar 

  4. Svendsen, A., Sequence Comparison with the Lipase Family, in Lipases. Their Structure Biochemistry and Application, edited by P. Woolley and S.B. Petersen, Cambridge University Press, Cambridge, 1994, pp. 1–21.

    Google Scholar 

  5. van Tilbeurgh, H., M.-P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillau, Interfacial Activation of the Lipase-Procolipase Complex by Mixed Micelles Revealed by X-ray Crystallography, Nature 362:814–820 (1993).

    Article  Google Scholar 

  6. Lang, D.A., M.L.M. Mannesse, G.H. DeHaas, H.M. Verheij, and B.W. Dijkstra, Structural Basis of the Chiral Selectivity of Pseudomonas cepacia Lipase, Eur. J. Biochem. 254:333–340 (1998).

    Article  CAS  Google Scholar 

  7. Schrag, J.D., Y. Li, M. Cygler, D. Lang, T. Burgdorf, H.-J. Hecht, R. Schmid, D. Schomburg, T.J. Rydel, J.D. Oliver, L.C. Strickland, C.M. Dunaway, S.B. Larson, J. Day, and A. McPherson, The Open Conformation of Pseudomonas Lipase, Structure 5:187–202 (1997).

    Article  CAS  Google Scholar 

  8. Kim, K.K., H.K. Song, D.H. Shin, K.Y. Hwang, and S.W. Suh, The Crystal Structure of a Triacylglycerol Lipase from Pseudomonas cepacia Reveals a Highly Open Conformation in the Absence of a Bound Inhibitor, Structure 5:173–185 (1997).

    Article  CAS  Google Scholar 

  9. Grochulski, P., F. Bouthillier, R.J. Kazlauskas, A.N. Serreqi, J.D. Schrag, E. Ziomek, and M. Cygler, Analogs of Reaction Intermediates Identify a Unique Substrate Binding Site in Candida rugosa Lipase, Biochemistry 33:3494–3500 (1994).

    Article  CAS  Google Scholar 

  10. Luic, M., S. Tomic, I. Lescic, E. Liubovic, D. Sepac, V. Sunjic, L. Vitale, W. Saenger, and B. Kojic-Prodic, Complex of Burkholderia cepacia Lipase with Transition State Analogue of 1-Phenoxy-2-acetoxybutane. Biocatalytic, Structural and Modelling Study, Eur. J. Biochem. 268:3964–3973 (2001).

    Article  CAS  Google Scholar 

  11. Brady, L., A.M. Brzozowski, Z.S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, and U. Menge, A Serine Protease Triad Forms the Catalytic Center of a Triacylglycerol Lipase, Nature 343:767–770 (1990).

    Article  CAS  Google Scholar 

  12. Pleiss, J., M. Fischer, and R.D. Schmid, Anatomy of Lipase Binding Sites: The Scissile Fatty Acid Binding Site, Chem. Phys. Lipids 93:67–80 (1998).

    Article  CAS  Google Scholar 

  13. Cavalier, J.-D., G. Buono, and R. Verger, Covalent Inhibition of Digestive Lipases by Chiral Phosphates, Acc. Chem. Res. 33:579–589 (2000).

    Article  CAS  Google Scholar 

  14. Svendsen, A., Lipase Protein Engineering, Biochim. Biophys. Acta 1543:223–238 (2000).

    CAS  Google Scholar 

  15. Brzozowski, A.M., U. Derewenda, Z.S. Derewenda, G.G. Dodson, D.M. Lawson, J.P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S.A. Patkar, and L. Thim, A Model for Interfacial Activation in Lipase From Structure of a Fungal Lipase-Inhibitor Complex, Nature 351:491–494 (1991).

    Article  CAS  Google Scholar 

  16. Derewenda, Z.S., A Twist in the Tale of Lipolytic Enzymes, Nat. Struct. Biol. 2:347–349 (1995).

    Article  CAS  Google Scholar 

  17. Berg, O.G., M.H. Gelb, M.-D. Tsai, and M.K. Jain, Interfacial Enzymology: The Secreted Phospholipase A2-Paradigm, Chem. Rev. 101:2613–2653 (2001).

    Article  CAS  Google Scholar 

  18. Segel, I.H., Enzyme Kinetics, John Wiley & Sons, New York, 1975.

    Google Scholar 

  19. Isaacs, N., Physical Organic Chemistry, 2nd edn., Longman, Harlow, Essex, United Kingdom, 1995.

    Google Scholar 

  20. Lin, G., C.-T. Shieh, H.-C. Ho, J.-Y. Chouhwang, W.-Y. Lin, and C.-P. Lu, Structure-Reactivity Relationships for the Inhibition Mechanism at The Second Alkyl Chain Binding Site of Cholesterol Esterase and Lipase, Biochemistry 38:9971–9981 (1999).

    Article  CAS  Google Scholar 

  21. Lin, G., G.-H. Chen, Y.-F. Lin, L.-H. Su, and P.-S. Liao, Highly Potent and Selective 4,4′-Biphenyl-4-acylate-4′-N-n-butylcarbamate Inhibitors as Pseudomonas species Lipase, Eur. J. Lipid Sci. Technol. 107:65–73 (2005).

    Article  CAS  Google Scholar 

  22. Lin, G., and G.-Y. Yu, QSAR for Phospholipase A2 Inhibitions by 1-Acyloxy-3-N-n-octylcarbamyl-benzenes, Bioorg. med. Chem. Lett. 15:2405–2408 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gialih Lin.

About this article

Cite this article

Chiou, SY., Cheng, YR., Lu, CP. et al. Kinetics and quantitative structure-activity relationships for pseudomonas sp. Lipase-catalyzed hydrolysis of both monoesters and diesters of ethylene glycol. J Amer Oil Chem Soc 83, 201–207 (2006). https://doi.org/10.1007/s11746-006-1194-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-006-1194-y

Key words

Navigation