Skip to main content
Log in

Sepiolite: An effective bleaching adsorbent for the physical refining of degummed rapeseed oil

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The efficiency of Turkish sepiolite in bleaching degummed rapeseed oil has been investigated. Experimental results indicate that the bleaching efficiency is more dependent on the ratio of sepiolite to oil than on operating parameters such as contact time and temperature. An increase in the sepiolite dosage reduces the color bodies of the rapeseed oil. Its effect on oxidation state, however, is complex and related to both primary and secondary oxidation products. The removal of impurities such as chlorophyll a, β-carotene, and phosphorus increases with increasing sepiolite dosage and reaches a maxumum at 1.5% sepiolite addition and 100°C bleaching temperature. Chlorophyll a, β-carotene, and phosphorus adsorptions can be described by a mechanism involving surface are and porosity of acid-activated sepiolite as key variables. The sorption is also independent of the polarity of the adsorbate molecules. Direct comparison of activated sepiolite with the commercial bleaching earth Tonsil 210 FF shows that in some respects sepiolite offers significant advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liew, K.Y., S.H. Tan, F. Morsingh, and L.E. Khoo, Adsorption of β-Carotene: II. On Cation Exchanged Bleaching Clays, J. Am. Oil Chem. Soc. 59:480–484 (1982).

    CAS  Google Scholar 

  2. Morgan, D.A., D.B. Shaw, M.J. Sidebottom, T.C. Soon, and R.S. Taylor, The Function of Bleaching Earths in the Processing of Palm, Palm Kernel and Coconut Oils, 62:292–299 (1985).

    CAS  Google Scholar 

  3. Christidis, G.E., and S. Kosiari, Decolorization of Vegetable Oils: A Study of the Mechanism of Adsorption of β-Carotene by an Acid-Activated Bentonite from Cyprus, Clays Clay Miner. 51:327–333 (2003).

    Article  CAS  Google Scholar 

  4. Brauner, K., and A. Preisinger, Struktur und Entstehung des Sepioliths, Mineral. Petrogr. Mitt. 6:120–140 (1956).

    Article  CAS  Google Scholar 

  5. Alvarez, A., Sepiolite: Properties and Uses, in Developments in Sedimentology 37, edited by A. Singer and E. Galan, Elsevier, Amsterdam, 1984, pp. 253–285.

    Google Scholar 

  6. Gonzalez-Pradas, E., M. Villafranca-Sanchez, and M. Socias-Viciana, Adsorption of Thiram from Aqueous Solution on Activated Carbon and Sepiolite, J. Chem. Technol. Biotechnol. 39:19–27 (1987).

    Article  CAS  Google Scholar 

  7. Fujivara, I., and M. Sato, Adsorption of Water Vapor on Sepiolite for Chemical Heat Pumps, J. Chem. Eng. Jpn 5:609–611 (1992).

    Article  Google Scholar 

  8. Bernal, M.P., and J.M. Lopez-Real, Natural Zeolites and Sepiolite as Ammonium and Ammonia Adsorbent Materials, Bioresource Technol. 43:27–33 (1993).

    Article  CAS  Google Scholar 

  9. Rytwo, G., S. Nir, B. Margulies, B. Casal, J. Merino, E. Ruiz-Hitzky, and J.M. Serratosa, Adsorption of Monovalent Organic Cations on Sepiolite; Experimental Results and Model Calculations, Clays Clay Miner. 46:340–348 (1998).

    Article  CAS  Google Scholar 

  10. Sabah, E., and M.S. Çelik, Interaction of Pyridine Derivatives with Sepiolite, J. Colloid Interface Sci. 251:33–38 (2002).

    Article  CAS  Google Scholar 

  11. Singer, A., and P.M. Huang, Adsorption of Humic Acid by Palygorskite and Sepiolite, Clay Miner. 24:561–564 (1989).

    Article  CAS  Google Scholar 

  12. Delacaillerie, J.B.D., V. Gruver, and J.J. Fripial, Modification of the Surface Properties of Natural Phyllosilicate Sepiolite by Secondary Isomorphic Substitution, J. Catal. 151:420–430 (1995).

    Article  Google Scholar 

  13. Rossi, M., M. Gianazza, C. Alamprese, and F. Stanga, The Role of Bleaching Clays and Synthetic Silica in Palm Oil Physical Refining, Food Chem. 82:291–296 (2003).

    Article  CAS  Google Scholar 

  14. European Standard EN 1097-3, Test for Mechanical and Physical Properties of Aggregates-Part 3: Determination of Loose Bulk Density and Voids, German Version (1998).

  15. German Standard Method DGF C-V 2(81), Säurezahl, Abteilung C—Fette, German Society for Fat Science (DGF; Deutsche Gesellschaft für Fettwissenschaft) (2004).

  16. AOCS, Official Methods and Recommended Practices of the AOCS, 5th edn., AOCS Press, Champaign, 1997.

    Google Scholar 

  17. German Standard Method DGF C-VI 6e(84), Anisidinzahl, Abteilung C—Fette, German Society for Fat Science (DGF; Deutsche Gesellschaft für Fettwissenschaft) (2004).

  18. ÖHMI-Method L 004-13, Bestimmung von Carotin, ÖHMI Engineering, Magdeburg, Germany.

  19. German Standard Method DGF C-VI 4(61), Phosphatide, Abteilung C—Fette, German Society for Fat Science (DGF; Deutsche Gesellschaft für Fettwissenschaft) (2004).

  20. Süd-Chemie AG, Content of Free Fatty Acids (FFA Content)—Colour Values—Degree of Oxidation All About Tonsil® Bleaching Earths, http://www.sud-chemie.com/scmcms/web/content.jsp?nodeId=4238&lang=en (accessed January 2005).

  21. Wiedermann, L.H., Degumming, Refining and Bleaching Soybean Oil, J. Am. Oil Chem. Soc. 58:159–166 (1981).

    CAS  Google Scholar 

  22. Taylor, D.R., D.B. Jenkins, and C.B. Ungermann, Bleaching with Alternative Layered Minerals: A Comparison with Acid-Activated Montmorillonite for Bleaching Soybean Oil, 66:334–341 (1989).

    CAS  Google Scholar 

  23. Taylor, D.R., C.B. Ungermann, and Z. Demidowicz, The Adsorption of Fatty Acids from Vegetable Oils with Zeolites and Bleaching Clay/Zeolite Blends, 61:1372–1379 (1984).

    CAS  Google Scholar 

  24. Rich, A.D., Some Basic Factors in the Bleaching of Fatty Oils, 41:315–321 (1964).

    CAS  Google Scholar 

  25. Nkpa, N.N., T.A. Arowolo, and H.J. Akpan, Quality of Nigerian Palm Oil After Bleaching with Local Treated Clays, 66:218–222 (1989).

    CAS  Google Scholar 

  26. Boki, K., M. Kubo, T. Wada, and T. Tamura, Bleaching of Alkali-Refined Vegetable Oils with Clay Minerals, 69:232–236 (1992).

    CAS  Google Scholar 

  27. Radojevic, M., V. Jovic, and D. Vitorovic, Study of Sepiolite from Goleš (Kosovo, Yugoslavia). I. Sorption Capacity, J. Serb. Chem. Soc. 67:489–497 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyüp Sabah.

About this article

Cite this article

Sabah, E., Çelik, M.S. Sepiolite: An effective bleaching adsorbent for the physical refining of degummed rapeseed oil. J Amer Oil Chem Soc 82, 911–916 (2005). https://doi.org/10.1007/s11746-005-1164-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-005-1164-4

Key Words

Navigation