Skip to main content
Log in

Processing effects on the polyaromatic hydrocarbon content of grapeseed oil

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Grapeseed oil can occasionally have dangerous levels for human health of polycyclic aromatic hydrocarbons (PAH) due to the drying process, which involves direct contact with combustion gases. Oil samples extracted from grapeseeds before and after drying were analyzed for their PAH content with a new, fast, bi-dimensional liquid chromatography method. Samples collected before drying had relatively high PAH amounts; Benzo(a)pyrene (BaP) content ranged from 0.9 to 2.4 ppb with an average of 1.4 ppb. The high contamination level found in the raw material is probably due to the practice of compacting pomace with bulldozers to reduce its volume before storage. The drying process did not significantly influence the light PAH content, but caused a large increase of the heavy fraction. BaP with an average content of 20.2 ppb, had the largest increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bories, G., Tossicità degli idrocarburi policiclici aromatici e dei prodotti di pirolisi, in Tossicologia e Sicurezza degli Alimenti, edited by Tecniche Nuove, Milano, 1988, pp. 359–372.

  2. Larsen, J.C., and E. Poulsen, in Toxicological Aspects of Food, edited by K. Miller, Elsevier Applied Science, London, 1987, pp. 205–212.

    Google Scholar 

  3. Zedeck, M.S., Polycyclic Aromatic Hydrocarbons, J. Environ. Pathol. Toxicol. 3:537–567 (1980).

    CAS  Google Scholar 

  4. Speer, K., E. Steeg, P. Horstmann, T. Kuhn, and A. Montag, Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Native Vegetable Oils, Smoked Fish Products, Mussels and Oysters, and Bream from the River Elbe, J. High Resolut. Chromatogr. 13:104–111 (1990).

    Article  CAS  Google Scholar 

  5. Gertz, C., and H. Kogelheide, Untersuchung und Beurteilung von PAK in Speisefetten und-ölen, Fat Sci. Technol. 96:175–180 (1994).

    CAS  Google Scholar 

  6. Balenovic, J., I. Petrovic, and M. Perkovac, Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils, in Proceeding of Euro Food Chemistry VIII, Wien, September 18–20, 1995, Vol. 2, pp. 275–281.

  7. Amerine M.A., R.E. Kunkee, C.S. Ough, V.L. Singleton, and A.D. Webb, in The Technology of Wine Making, edited by AVI Publishing Company Inc., Westport, Connecticut, 1980, p. 645.

  8. Moret, S., and L.S. Conte, Off-line LC-LC Determination of PAHs in Edible Oils and Lipidic Extracts, J. High Resolut. Chromatogr. 21:253–258 (1998).

    Article  CAS  Google Scholar 

  9. Moret, S., L.S. Conte, and D. Dean, Assessment of Polycyclic Aromatic Hydrocarbons Content of Smoked Fish by Means of a Fast HPLC/HPLC Method. J. Agric. Food Chem. 47:1367–1371 (1999).

    Article  CAS  Google Scholar 

  10. Mariani, C., and E. Fedeli, Idrocarburi Policiclici Aromatici negli oli vegetali, Riv. Ital. Sostanze Grasse 61:305–315 (1984).

    CAS  Google Scholar 

  11. Guillen, M.D., Polycyclic Aromatic Compounds: Extraction and Determination in Food, Food Addit. Contam. 11:669–684 (1994).

    CAS  Google Scholar 

  12. Tamakawa, T.K., T. Kato, and M. Oba, Polycyclic Aromatic Hydrocarbons, in Handbook of Food Analysis, Vol. 2: Residue and Other Food Component Analysis, edited by L.M.L. Nollet, Marcel Dekker, Inc., New York, 1996, pp. 1641–1663.

    Google Scholar 

  13. Grob, K., I. Kaelin, and A. Artho, Coupled LC-GC; The Capacity of Silica Gel (HP)LC Columns for Retaining Fat, J. High Resolut. Chromatogr. 14:373–376 (1991).

    Article  CAS  Google Scholar 

  14. Moret, S., K. Grob, and L.S. Conte, On-line High-Performance Liquid Chromatography-Solvent Evaporation-High-Performance Liquid Chromatography-Capillary Gas Chromatography-Flame Ionization Detection for the Analysis of Mineral Oil Polyaromatic Hydrocarbons in Fatty Foods, J. Chromatogr. A 750:361–368 (1996).

    Article  CAS  Google Scholar 

  15. Ciusa, W., and A. Morgante, Gli Idrocarburi Policiclici Aromatici (IPA) come metaboliti naturali di vegetali e organi animali, Riv. Merceol. 29:5–65 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Conte.

About this article

Cite this article

Moret, S., Dudine, A. & Conte, L.S. Processing effects on the polyaromatic hydrocarbon content of grapeseed oil. J Amer Oil Chem Soc 77, 1289–1292 (2000). https://doi.org/10.1007/s11746-000-0203-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-000-0203-5

Key words

Navigation