Skip to main content

Viscosity prediction for fatty systems

Abstract

Viscosity data have been measured as a function of temperature for two pure polyunsaturated fatty compounds (linoleic acid and trilinolein), for two multicomponent fatty systems, for a commercial-grade oleic acid (approximately 80% pure), and for canola oil. The measurements were performed in Cannon Fenske glass capillary kinematic viscometers. The contents of a large data bank, containing viscosity data for saturated, monousaturated, and polyunsaturated pure fatty substances, were correlated by an equation based on the number of carbon atoms and double bonds. By using this equation for pure compounds and the UNIMOD group contribution method for mixtures, the viscosity data for model fatty systems, commercial oleic acid, and canola oil were predicted. The good results obtained in the present work indicate that this approach can be a valuable tool for designing or evaluating chemical process equipment for the oil industry.

This is a preview of subscription content, access via your institution.

References

  1. Valeri, D., and A.J.A. Meirelles, Viscosities of Fatty Acids, Triglycerides, and Their Binary Mixtures, J. Am. Oil Chem. Soc. 74:1221–1226 (1997).

    CAS  Google Scholar 

  2. Noureddini, H., B.C. Teoh, and L.D. Clements, Viscosities of Vegetable Oils and Fatty Acids, 69:1189–1191 (1992).

    CAS  Google Scholar 

  3. Shadiakhy, A.H., Procedure for Optimum Design for Fatty Acid Fractionation [in German], Fat Sci. Technol. 92:602–605 (1990).

    Google Scholar 

  4. Toro-Vasquez, J.F., and A. Gallegos-Infante, Viscosity and Its Relationship to Crystallization in a Binary System of Saturated Triacylglycerides and Sesame Seed Oil, J. Am. Oil Chem. Soc. 73:1237–1246 (1996).

    Article  Google Scholar 

  5. Batistella, C.B., and M.R. Wolf-Maciel, Recovery of Carotenoids from Plam Oil by Modlecular Distillation, Comput. Chem. Eng. 22 (supplement):S53-S60 (1998).

    Article  CAS  Google Scholar 

  6. Asadauskas, S., J.M. Perrez, and J.L. Duda, Lubrication Properties of Castor Oil—Potential Basestock for Biodegradable Lubriacants, Lubr. Eng. 53(12):35–40 (1997).

    CAS  Google Scholar 

  7. Ali, Y., M.A. Hanna, and S.L. Cuppett, Fuel Properties of Tallow and Soybean Oil Esters, J. Am. Oil Chem. Soc. 72: 1557–1564 (1995).

    CAS  Google Scholar 

  8. Halvorsen, J.D., W.C. Mammel, Jr., and L.D. Clements, Density Estimation for Fatty Acids and Vegetable Oils Based on Their Fatty Acid Composition, 70:875–880 (1993).

    CAS  Google Scholar 

  9. Fornani, T., S. Bottini, and E.A. Brignole, Application of UNIFAC to Vegetable Oil-Alkane Mixtures, 71:391–395 (1994).

    Google Scholar 

  10. Ralev, N., and D. Dobrudjaliev, Prediction of Vapor-Liquid Equilibrium of Saturated High Fatty Acids Using ASOG Group-Contribution Method, Fluid Phase Equilib. 65:159–165 (1982).

    Article  Google Scholar 

  11. Torres, M.B., and A.J.A. Meirelles, Prediction of Fatty Acids and Fatty Esters Vapour Pressure and of Vapour-Liquid Equilibrium Using UNIFAC, in Engineering & Food at ICEF 7 (Proceedings of 7th International Congress on Engineering and Food), edited by R. Jowitt, Sheffield Academic Press, Sheffield, United Kingdom, 1996, Supplement, pp. SA35-SA38.

    Google Scholar 

  12. Batista, E., S. Monnerat, L. Stragevitch, C.G. Pina, C.B. Gonçalves, and A.J.A. Meirelles, Prediction of Liquid-Liquid Equilibrium for Systems of Vegetable Oils, Fatty Acids, and Ethanol, J. Chem. Eng. Data 44:1365–1369 (1999).

    Article  CAS  Google Scholar 

  13. Cao, W., K. Knudse, A. Fredenslund, and P. Rasmussen, Group-Contribution Viscosity Predictions of Liquid Mixtures Using UNIFAC-VLE Parameters, Ind. Eng. Chem. Res. 32:2088–2092 (1993).

    Article  CAS  Google Scholar 

  14. American Oil Chemists’ Society, Official Methods and Recommended Practices of the American Oil Chemists’ Society, 3rd edn., American Oil Chemists’ Society, Champaign, Vols. 1–2, 1988.

    Google Scholar 

  15. Hartman, L., and R.C.A. Lago, Rapid Preparation of Fatty Acid Methyl Esters from Lipids, Lab. Pract. 22:475–476 (1973).

    CAS  Google Scholar 

  16. Chumpitaz, L.D.A., L.F. Coutinho, and A.J.A. Meirelles, Surface Tension of Fatty Acids and Triglycerides, J. Am. Oil Chem. Soc. 76:379–382 (1999).

    CAS  Google Scholar 

  17. Antoniosi Filho, N.R., O.L. Mendes, and F.M. Lanças, Computer Prediction of Triacylglycerol Composition of Vegetable Oils by HRGC, Chromatographia 40:557–562 (1995).

    Article  CAS  Google Scholar 

  18. Batista, E., S. Monnerat, K. Kato, L. Stragevitch, and A.J.A. Meirelles, Liquid-Liquid Equilibrium for Systems of Canola Oil, Oleic Acid and Short-Chain Alcohols, J. Chem. Eng. Data 44:1360–1364 (1999).

    Article  CAS  Google Scholar 

  19. Cruz, M.S., L.D.A. Chumpitaz, J.G.L.F. Alves, and A.J.A. Meirelles, Kinematic Viscosities of Poly(ethylene glycols), 45:61–63 (2000).

    Article  CAS  Google Scholar 

  20. Nourredini, H., B.C. Teoh, and L.D. Clements, Densities of Vegetable Oils and Fatty Acids, J. Am. Oil Chem. Soc. 69:1184–1188 (1992).

    Google Scholar 

  21. Brockmann, R., G. Demmring, U. Kreutzer, M. Lindemann, J. Plachenka, and U. Steinberner, Fatty Acids, in Ulmann’s Encyclopedia of Industrial Chemistry, 5th edn., VCH Publishers, Weinheim, Germany, 1987, Vol. A10.

    Google Scholar 

  22. Formo, M.W., Physical Properties of Fats and Fatty Acids, in Bailey’s Industrial Oil Fat Products, 4th edn., edited by D. Swern, John Wiley & Sons, New York, Vol. 1, 1979.

    Google Scholar 

  23. Fernandez, F., and F. Montes, Viscosity of Multicomponent Systems of Normal Fatty Acids, Principle of Congruence, J. Am. Oil Chem. Soc. 53:130–131 (1976).

    Google Scholar 

  24. Liew, K.Y., C.E. Seng, and E.K. Lau, Viscosities of Some Long-Chain Fatty Acids and Their Relationship with Chainlength, 68:488–492 (1991).

    CAS  Google Scholar 

  25. Unichema International, Fatty Acid Data Bank, 2nd edn., Emmerich, Germany, 1987.

    Google Scholar 

  26. Rodriguez, M., M. Galán, M.J. Muñoz, and R. Martín, Viscosity of Triglycerides+Alcohols from 278 to 313 K, J. Chem. Eng. Data 39:102–105 (1994).

    Article  CAS  Google Scholar 

  27. Fredenslund, A., R.L. Jones, and J.M. Prausnitz, Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE J. 21:1086–1099 (1975).

    Article  CAS  Google Scholar 

  28. Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley & Sons, New York, 1968.

    Google Scholar 

  29. Fredenslund, A., and J.M. Sorensen, Group Contribution Estimation Methods, in Models for Thermodynamics and Phase Equilibria Calculations, edited by S.I. Sandler, Marcel Dekker, New York 1994.

    Google Scholar 

  30. Sonntag, N.O.V., Composition and Characteristics of Individual Fats and Oils, in Bailey’s Industrial Oil Fat Products, 4th edn., edited by D. Swern, John Wiley & Sons, New York, Vol. 1, 1979.

    Google Scholar 

  31. Gunstone, F.D., J.L. Harwood, and F.B. Padley, The Lipid Handbook, 2nd edn., Chapman & Hall, New York, 1994, p. 87 (Table 3.92).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. A. Meirelles.

About this article

Cite this article

Rabelo, J., Batista, E., Cavaleri, F.v.W. et al. Viscosity prediction for fatty systems. J Amer Oil Chem Soc 77, 1255–1262 (2000). https://doi.org/10.1007/s11746-000-0197-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-000-0197-z

Key words

  • Canola oil
  • fatty acids
  • fatty mixtures
  • linoleic acid
  • oils
  • triglycerides
  • trilinolein
  • UNIMOD
  • viscosity
  • viscosity prediction