Skip to main content

Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil


Polyphenols of olive oil show autoprotective, sensory, and nutritional-therapeutic effects. Two new phenolic compounds have been isolated from virgin olive oils by preparative high-performance liquid chromatography and their structures established on the basis of their mass spectra and nuclear magnetic resonance spectral data. The compounds identified are the lignans pinoresinol and 1-acetoxypinoresinol. Both have been found in all the commercial virgin olive oils analyzed. Pinoresinol concentration was rather similar in all the oils. In contrast, 1-acetoxypinoresinol concentration was higher in oils of the Arbequina and Empeltre cultivars than in Picual or Picudo cultivars. Pinoresinol and 1-acetoxypinoresinol may represent the major phenolic compounds in some Arbequina and Empeltre oils. Lignans possess biological and pharmacological properties and, therefore, the two new compounds identified in olive oils may contribute to the reported beneficial effects which are attributed to polyphenols on human health of a diet rich in olive oil.

This is a preview of subscription content, access via your institution.


  1. 1.

    Willet, W.C., S. Sacks, A. Trichopoulou, G. Drescher, A. Ferro-Luzi, E. Helsing, and D. Trichopoulos, Mediterranean Diet Pyramid a Cultural Model for Healthy Eating, Am. J. Clin. Nutr. 61:1402S-1406S (1995).

    Google Scholar 

  2. 2.

    Lipworth, L., M.E. Martinez, J. Angell, C.C. Hsien, and D. Trichopoulos, Olive Oil and Human Cancer, an Assessment of the Evidence, Prev. Med. 26:81–190 (1997).

    Article  Google Scholar 

  3. 3.

    Wiseman, S.A., J.N. Mathot, N.J. de Fouw, and L.B. Tijburg, Dietary Non-tocopherol Antioxidants Present in Extra Virgin Olive Oil Increase the Resistance of Low Density Lipoproteins to Oxidation in Rabbits, Atherosclerosis 120:15–23 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    Visioli, F., and C. Galli, Olive Oil Phenols and Their Potential Effects on Human Health, J. Agric. Food Chem. 46:4292–4296 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    Montedoro, G.F., M. Servili, M. Baldioli, R. Selvaggini, E. Miniati, and A. Macchioni, Simple and Hydrolyzable Compounds in Virgin Olive Oil. 3. Spectroscopic Characterization of the Secoiridoid Derivatives, ——Ibid. 41:2228–2234 (1993).

    CAS  Article  Google Scholar 

  6. 6.

    Cortesi, N., M. Azzolini, P. Rovellini, and E.I. Fedeli, Minor Polar Components of Virgin Olive Oils: A Hypothetical Structure by LC-MS, Riv. Ital. Sostanze Grasse 72:241–251 (1995).

    CAS  Google Scholar 

  7. 7.

    Angerosa, F., N. d'Alessandro, F. Corana, and G. Mellerio, Characterization of Phenolic and Secoiridoid Aglycons Present in Virgin Oil by Gas Chromatography-Chemical Ionization Mass Spectrometry, J. Chromatogr. A 736:195–203 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    Pirisi, F., A. Angioni, P. Cabras, V.L. Garau, M.L. Sanjust di Teulada, M. Kaim dos Santos, and G. Bandino, Phenolic Compounds in Virgin Olive Oils. I. Low-Wavelength Quantitative Determination of Complex Phenols by High-Performance Liquid Chromatography Under Isocratic Elution, ——Ibid. 768:207–213 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    Manna, C., P. Galletti, V. Cucciolla, G.F. Montedoro, and V. Zappia, Olive Oil Hydroxytyrosol Protects Human Erythrocytes Against Oxidative Damages, J. Nutr. Biochem. 10:159–165 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    Giovannini, C., E. Straface, D. Modesti, E. Coni, A. Cantafora, M. De Vincenzi, W. Malorni, and R. Masella, Tyrosol, the Major Olive Oil Biophenol, Protects against Oxidized-LDL-Induced Injury in Caso-2-Cell, J. Nutr. 129:1269–1277 (1999).

    CAS  Google Scholar 

  11. 11.

    Rovellini, P., N. Cortesi, and E.I. Fedeli, Analysis of Flavonoids from Olea europaea by HPLC-UV and HPLC-Electrospray-MS, Riv. Ital. Sostanze Grasse 74:273–279 (1997).

    CAS  Google Scholar 

  12. 12.

    Bianco, A., R.A. Mazzei, C. Melchioni, G. Romeo, M.L. Scarpati, A. Soriero, and N. Uccella, Microcomponents of Olive Oil-III. Glucosides of 2(3,4-dihydroxyphenyl) Ethanol, Food Chem. 63:461–464 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Brenes, M., A. García, P. García, J.J. Rios, and A. Garrido, Phenolic Compounds in Spanish Olive Oils, J. Agric. Food Chem. 47:3535–3540 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Montedoro, G.F., M. Servili, M. Baldioli, and E. Miniati, Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 2. Initial Characterization of the Hydrolyzable Fraction, ——Ibid. 40:1577–1580 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    Montedoro, G.F., M. Servili, M. Baldioli, and E. Miniati, Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 1. Their Extraction, Separation and Quantitative and Semiquantitative Evaluation by HPLC, ——Ibid. 40:1571–1576 (1992).

    CAS  Article  Google Scholar 

  16. 16.

    Hidalgo, F.J., R. Zamora, and E. Vioque, Syntheses and Reactions of Methyl (Z)-9,10-Epoxy-13-oxo-(E)-11-octadecenoate and Methyl (E)-9,10-Epoxy-13-oxo-(E)-11-octadecenoate, Chem. Phys. Lipids 60:225–233 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    Servili, M., M. Baldioli, R. Selvaggini, E. Miniati, A. Macchioni, and G.F. Montedoro, High-Performance Liquid Chromatography Evaluation of Phenols in Olive Fruit, Virgin Oil, Vegetation Waters, and Pomace and 1D- and 2D-Nuclear Magnetic Resonance Characterization, J. Am. Oil Chem. Soc. 76:873–882 (1999).

    CAS  Google Scholar 

  18. 18.

    Pretsch, E., T. Clerc, J. Seibl, and W. Simon, Tabellen sur Strukturaufklärung Organischer Verbindungen mit Spektroskopischen Metoden, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  19. 19.

    Tsukamoto, H., S. Hisada, and S. Nishibe, Lignans from Bark of the Olea Plants. I, Chem. Pharm. Bull. 32:2730–2735 (1984).

    CAS  Google Scholar 

  20. 20.

    Harborne, J.B., and H. Baxter, Phytochemical Dictionary: A Handbook of Bioactive Compounds, Taylor and Francis, Philadelphia, 1999, pp. 480–490.

    Google Scholar 

  21. 21.

    Lin-gen, Z., O. Seligmann, K. Jurcic, and H. Wagner, Constituents of Daphne tangutica, Planta Med. 45:172–176 (1982).

    CAS  Google Scholar 

  22. 22.

    Katayama, T., L.B. Davin, and N.G. Lewis, An Extraordinary Accumulation of (-)-Pinoresinol in Cell-Free Extracts of Forsythia intermedia: Evidence for Enantiospecific Reduction of (+)-Pinoresinol, Phytochemistry 31:3875–3881 (1992).

    CAS  Article  Google Scholar 

  23. 23.

    Nikaido, T., T. Ohmoto, T. Kinoshita, U. Sankawa, S. Nishibe, and S. Hisada, Inhibition of Cyclic AMP Phosphodiesterase by Lignans, Chem. Pharm. Bull. 29:3586–3592 (1981).

    CAS  Google Scholar 

  24. 24.

    MacRae, W.D., and G.H.N. Towers, Biological Activities of Lignans, Phytochemistry 23:1207–1220 (1984).

    CAS  Article  Google Scholar 

  25. 25.

    Oomah, B.D., and G. Mazza, Flaxseed Products for Disease Prevention, in Functional Foods, edited by G. Mazza, Technomic Publishing Company, Inc., Lancaster, 1998, pp. 91–138.

    Google Scholar 

  26. 26.

    Sih, C.J., P.R. Ravikumar, F.-C. Huang, C. Buckner, and H. Whitlock, Isolation and Synthesis of Pinoresinol Diglucoside, a Major Antihypertensive Principle of Tu-Chung (Eucommia ulmoides, Oliver), J. Am. Chem. Soc. 98:5412–5413 (1976).

    CAS  Article  Google Scholar 

  27. 27.

    Kawagishi, S., T. Oosawa, and H. Katsuzaki, Pinoresinol Glucoside, Sesame Seed Extract Containing Glycoside, and Its Use for Preventing Oxidation of Lipids, Jpn. Patent 6116282, 1994, pp. 1–5.

  28. 28.

    Meagher, L.P., G.R. Beecher, V.P. Flanagan, and N.W. Li, Isolation and Characterization of the Lignans, Isolariciresinol and Pinoresinol, in Flaxseed Meal, J. Agric. Food Chem. 47:3173–3180 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    Tsukamoto, H., S. Hisada, and S. Nishibe, Lignans from Bark of the Olea Plants. II, Chem. Pharm. Bull. 33:1232–1241 (1985).

    CAS  Google Scholar 

  30. 30.

    Tanahashi, T., N. Nagakura, K. Inoue, H. Inouye, and T. Shingu, Sambacolignoside, a New Lignan-Secoiridoid Glucoside from Jasminum sambac, Chem. Pharm. Bull. 35:5032–5035 (1987).

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Antonio Garrido.

About this article

Cite this article

Brenes, M., Hidalgo, F.J., García, A. et al. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J Amer Oil Chem Soc 77, 715–720 (2000).

Download citation

Key Words

  • 1-Acetoxypinoresinol
  • MS
  • NMR
  • olive oil
  • phenols
  • pinoresinol