Skip to main content
Log in

Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The effects of temperature and temperature shift on the fatty acid composition and docosahexaenoic acid (DHA, C22∶6n−3) content and productivity of the marine microalga Crypthecodinium cohnii ATCC 30556 were investigated. The microalga grew well over the entire range of temperatures (15–30°C) studied. High temperature favored the growth of the microalga with the highest specific growth rate of 0.092 h−1 at 30°C. In contrast, low temperature favored the formation of polyunsaturated fatty acids. The highest DNA content was obtained at 15°C in the early stationary phase (i.e., 72h). In order to achieve high DHA productivity, a shift from high temperature to low temperature at a later stage of cultivation (i.e., 48h) was also attempted. A temperature shift from 25°C (for 48 h) to 15°C (for 24 h) resulted in an increase in cellular DHA content by 19.9% and productivity by 6.5% as compared to that maintained at 25°C (for 72 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gill, I., and R. Valivety, Polyunsaturated Fatty Acids, Part I: Occurrence, Biological Activities and Applications, Trends Biotechnol. 15:401–409 (1997).

    Article  CAS  Google Scholar 

  2. Radwan, S.S., Sources of C20-Polyunsaturated Fatty Acids for Biotechnological Use, Appl. Microbiol. Biotechnol. 35:421–430 (1991).

    Article  CAS  Google Scholar 

  3. Harrington, G.W., D.H. Beach, J.E. Dunham, and G.G. Holz, Jr., The Polyunsaturated Fatty Acids of Marine Dinoflagellates, J. Protozool. 17:213–219 (1970).

    CAS  Google Scholar 

  4. Jiang, Y., F. Chen, and S.Z. Liang, Production Potential of Docosahexaenoic Acid by the Heterotrophic Marine Dinoflagellate Crypthecodinium cohnii, Process Biochem. 34:633–637 (1999).

    Article  CAS  Google Scholar 

  5. Henderson, R.J., J.W. Leftley, and J.R. Sargent, Lipid Composition and Biosynthesis in the Marine Dinoflagellate Crypthecodinium cohnii, Phytochemistry 27:1679–1683 (1988).

    Article  CAS  Google Scholar 

  6. Richmond, A.E., Microalgaculture, Crit. Rev. Biotechnol. 4: 368–438 (1986).

    Google Scholar 

  7. Yongmanitchai, W., and O.P. Ward, Omega-3 Fatty Acids: Alternative Sources of Production, Process Biochem. 24:117–125 (1989).

    CAS  Google Scholar 

  8. Beach, D.H., G.W. Harrington, J.L. Gellerman, H. Schlenk, and G.G. Holz, Jr., Biosynthesis of Oleic Acid and Docosahexaenoic Acid by a Heterotrophic Marine Dinoflagellate Crypthecodinium cohnii, Biochim. Biophys. Acta 369:16–24 (1974).

    CAS  Google Scholar 

  9. Hamamoto, T., N. Takata, T. Kudo, and K. Horikoshi, Effect of Temperature and Growth Phase on Fatty Acid Composition of the Psychrophilic Vibrio sp. Strain no. 5710, FEMS Microbiol. Lett. 119:77–82 (1994).

    Article  CAS  Google Scholar 

  10. Starr, R.C., and J.A. Zeikus, UTEX—The Culture Collection of Algae at the University of Texas Austin, J. Phycol. (suppl.) 29: 90–95 (1993).

    Google Scholar 

  11. Chen, F., and M.R. Johns, Relationship Between Substrate Inhibition and Maintenance Energy of Chlamydomonas reinhardtii in Heterotrophic Culture, J. Appl. Physiol. 8:15–19 (1996).

    Google Scholar 

  12. Cohen, Z., D. Shiran, I. Khozin, and Y.M. Heimer, Fatty Acid Unsaturation in the Red Alga Porphyridium cruentum. Is the Methylene Interrupted Nature of Polyunsaturated Fatty Acids an Intrinsic Property of the Desaturases? Biochim. Biophys. Acta 1344:59–64 (1997).

    CAS  Google Scholar 

  13. Pirt, S.J., Principles of Microbe and Cell Cultivation, Blackwell Scientific, Oxford, 1975.

    Google Scholar 

  14. Goldman, J.C., and E.J. Carpenter, A Kinetic Approach to the Effect of Temperature on Algal Growth, Limnol. Oceanogr. 19: 756–766 (1974).

    Article  Google Scholar 

  15. Beach, D.H., and G.G. Holz, Jr., Environmental Influences on the Docosahexaenoate Content of the Triacylglycerols and Phosphatidylcholine of a Heterotrophic, Marine Dinoflagellate, Crypthecodinium cohnii, Biochim. Biophys. Acta 316:56–65 (1973).

    CAS  Google Scholar 

  16. Tuttle, R.C., and A.R. Loeblich, III, An Optimal Growth Medium for the Dinoflagellate Crypthecodinium cohnii, Phycologia 14:1–8 (1975).

    Google Scholar 

  17. Kruger, G.H.J., and J.N. Eloff, The Effect of Temperature on Specific Growth Rate and Activation Energy of Microcystis and Synechoccocus Isolates Relevant to the Onset of Natural Blooms, J. Limnol. Soc. S. Afr. 4:119–124 (1978).

    Google Scholar 

  18. Vonshak, A., and A. Richmond, Problems in Developing the Biotechnology of Algal Mass Production, Plant Soil 89: 129–135 (1985).

    Article  Google Scholar 

  19. Gounot, A.M., Bacterial Life at Low Temperature: Physiological Aspects and Biotechnological Implications, J. Appl. Bacteriol. 71:386–397 (1991).

    CAS  Google Scholar 

  20. Epand, R.M., R.F. Epand, N. Ahmed, and R. Chen, Promotion of Hexagonal Phase Formation and Lipid Mixing by Fatty Acids with Varying Degrees of Unsaturation, Chem. Phys. Lipids 57: 75–80 (1995).

    Article  Google Scholar 

  21. Seto, A., H.L. Wang, and C.W. Hesseltine, Culture Conditions Affect Eicosapentaenoic Acid Content of Chlorella minutissima, J. Am. Chem. Soc. 61:892–894 (1984).

    CAS  Google Scholar 

  22. Chen, F., and M.R. Johns, Effect of C/N Ratio and Aeration on the Fatty Acid Composition of Heterotrophic Chlorella sorokiniana, J. Appl. Phycol. 3:203–209 (1991).

    Article  CAS  Google Scholar 

  23. Singh, A., and O.P. Ward, Microbial Production of Docosahexaenoic Acid, Adv. Appl. Microbiol. 45:271–312 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

About this article

Cite this article

Jiang, Y., Chen, F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii . J Amer Oil Chem Soc 77, 613–617 (2000). https://doi.org/10.1007/s11746-000-0099-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-000-0099-0

Key Words

Navigation