Advertisement

Journal of the American Oil Chemists' Society

, Volume 77, Issue 3, pp 275–280 | Cite as

Preparation of rapeseed oil esters of lower aliphatic alcohols

  • Dragan NimcevicEmail author
  • Rupert Puntigam
  • Manfred Wörgetter
  • J. Richard Gapes
Article

Abstract

Rapeseed oil esters with lower aliphatic alcohols (C1−C4) were prepared in simple batch mode using an alkali (KOH) or acid (H2SO4) catalyst. The transesterification reaction conditions were optimized in order to obtain high yields of esters of the quality defined by standards for biodiesel fuels and for a short reaction time. Under these conditions it was possible to prepare only the methyl and ethyl esters catalyzed by KOH. Propyl and butyl esters were obtained only under acid catalysis conditions. The reaction catalyzed by H2SO4 was successfully accelerated using slightly higher catalyst concentrations at the boiling points of the alcohols used. The branched-chain alcohols reacted more slowly than their linear homologs, while t-butanol did not react at all. It was also possible to transesterify rapeseed oil using a mixture of alcohols characteristic of the end products of some fermentation processes (e.g., the acetone-butanol fermentation). A simple calculation was made which showed that, because of the higher price of longer-chain alcohols and because of the more intensive energy input during production the esters of these alcohols, they are economically unfavorable as biodiesel fuels when compared with the methyl ester.

Key Words

Biodiesel fuels butyl esters estimated ester production ethyl esters methyl esters propyl esters transesterification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, C., R. Stern, and J. C. Guibet, Esters from Vegetable Oils as Substitutes for Diesel Fuels, in Proceedings, VIII International Symposium on Alcohol Fuels, November 13–16, 1988, Tokyo, Japan, pp. 137–142.Google Scholar
  2. 2.
    Dohne, E., Pflanzenöl als Motortreibstoff, Agrartechnik Würzburg 66:16–23 (1987).Google Scholar
  3. 3.
    Vellguth, G., Field Test of a DI-Diesel Tractor with Methylester of Rape Oil as Alternative Fuel, in Proceedings of the International Conference on Bioenergy, edited by H. Egneus and A. Ellegard, Vol. IV: Bioenergy Utilisation, Elsevier, London, 1984, pp. 215–222.Google Scholar
  4. 4.
    Leifert, K.J., Zukunftsperspektiven der Erzeugung und Verwendung von Pflanzenöl als Motortreibstoff in der EU, Verlag Lang, Frankfurt/M, Germany, 1996.Google Scholar
  5. 5.
    Goering, C.E., and B. Fry, Engine Durability Sereening Tests of a Diesel Oil/Soy Oil/Alcohol Microemulsion Fuel, J. Am. Oil. Chem. Soc. 61:1627–1632 (1984).Google Scholar
  6. 6.
    Schwab, A.W., H.C. Nielsen, D.D. Brooks, and E.H. Pryde, Triglyceride/Aqueous Ethanol/1-Butanol Microemulsions, J. Disp. Sci. Technol. 4:1–17 (1983).Google Scholar
  7. 7.
    Mittelbach, M., Herstellung von Fettsäuremethylestern und deren Verwendung als Dieselkraftstoff, Österreichische Chemie-Zeitschrift 90:147–150 (1989).Google Scholar
  8. 8.
    Mittelbach, M., M. Wörgetter, and J. Pernkopf, Diesel Fuel Derived from Vegetable Oils: Preparation and Use of Rape Oil Methyl Ester, Energy Agric. 2:369–384 (1983).CrossRefGoogle Scholar
  9. 9.
    Kildiran, G., S. Özgul, and S. Türkay, In-situ Alcoholysis of Soybean Oil, J. Am. Oil. Chem. Soc. 73:225–228 (1996).CrossRefGoogle Scholar
  10. 10.
    Freedman, B., R.O. Butterfield, and E.H. Pryde, Transesterification Kinetics of Soybean Oil, ——Ibid. 63:1375–1380 (1986).Google Scholar
  11. 11.
    Nye, M.J., T.W. Williamson, S. Deshpande, J.H. Schrader, W.H. Snively, T.P. Yurkewich, and C.L. French, Conversion of Used Frying Oil to Diesel Fuel by Transesterification: Preliminary Tests, ——Ibid. 60:1598–1601 (1983).Google Scholar
  12. 12.
    Mittelbach, M., Die Erzeugung von Monoestern der fetten Öle, in Symposium Rapsmethylester-Kraftstoff und Rohstoff, edited by H. Schindlbauer, Gesellschaft Österreichischer Chemiker, Vienna, 1992, pp. 161–168.Google Scholar
  13. 13.
    Freedman, B., E.H. Pryde, and T.L. Mounts, Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils, J. Am. Oil Chem. Soc. 61:1638–1643 (1984).Google Scholar
  14. 14.
    Gauglitz, E.J., and L.W. Lehman, The Preparation of Alkyl Esters from Highly Unsaturated Triglycerides,——Ibid. 40:197–198 (1962).Google Scholar
  15. 15.
    Official Methods and Recommended Practices of the American Oil Chemists' Society, 4th edn., American Oil Chemists' Society, Champaign, 1989.Google Scholar
  16. 16.
    Gapes, J.R., D. Nimcevic, and A. Friedl, Long-Term Continuous Cultivation of Clostridium beijerinckii in a Two-Stage Chemostat with On-Line Solvent Removal, Appl. Environ. Microbiol. 62:3210–3219 (1996).Google Scholar
  17. 17.
    Jones, D.T., and D.R. Woods, Acetone-Butanol Fermentation Revisited, Microbiol. Rev. 50:484–524 (1986).Google Scholar
  18. 18.
    Klopfenstein, W.E., and H.S. Walker, Efficiencies of Various Esters of Fatty Acids as Diesel Fuels, J. Am. Oil Chem. Soc. 60:1596–1598 (1983).Google Scholar
  19. 19.
    Wheeler, W.B., Refrigerant System Lubricant and Method, U.S. Patent 5,750,046 (1998).Google Scholar
  20. 20.
    Killick, R.W., Corn Drying Compositions, U.S. Patent 5,049,192 (1991).Google Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • Dragan Nimcevic
    • 2
    Email author
  • Rupert Puntigam
    • 2
  • Manfred Wörgetter
    • 1
  • J. Richard Gapes
    • 1
  1. 1.Federal Institute of Agricultural EngineeringWieselburgAustria
  2. 2.Institute of Chemical Engineering, Fuel Technology and Environmental TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations