Journal of the American Oil Chemists' Society

, Volume 77, Issue 3, pp 257–263 | Cite as

Long-term behavior of oil-based varnishes and paints. Photo- and thermooxidation of cured linseed oil

  • Jacky Mallégol
  • Jean-Luc GardetteEmail author
  • Jacques Lemaire


Thermooxidation at 100°C and photooxidation at wavelengths above 300 nm of dried oil films were evaluated. The chemical modifications of the networks were determined by infrared analysis coupled with gaseous treatments (NO, SF4, and NH3). The dried films are rather stable in thermooxidation, whereas in photooxidation, important degradation of the network occurs with many chain scissions. This photoinstability results from the presence of crosslinks that are sensitive to radical attack because of the lability of the hydrogen atom on the tertiary carbons. The photooxidation reactions are fully described in this paper. Yellowing of the cured samples, observed with ultraviolet-visible and fluorescence spectrometries, rapidly is decreased by irradiation because the oil contaminants that are mainly responsible for the yellowness are photooxidized. On the contrary, yellowing slowly but continuously increases during thermooxidation at 100°C.

Key Words

Drying oil fluorescence spectroscopy FTIR spectroscopy mechanisms photooxidation thermooxidation thin films UV spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wold, C.H., and M.D. Soucek, Mixed Metal Oxide Inorganic/Organic Coatings, J. Coat. Technol. 70:43–51 (1998).Google Scholar
  2. 2.
    Felder-Casagrande, S., and M. Odlyha, Development of Stadard Paint Films Based on Artists' Materials, J. Therm. Anal. 49:1585–1591 (1997).CrossRefGoogle Scholar
  3. 3.
    Carbini, M., S. Volpin, and P. Traldi, Curie-Point Pyrolysis Gas Chromatography/Mass Spectrometry in the Identification of Paint Media, Org. Mass Spectrom. 29:561–565 (1994).CrossRefGoogle Scholar
  4. 4.
    Odlyha, M., Characterisation of Aged Paint Films by Differential Scanning Calorimetry, Thermochim. Acta, 134:85–90 (1988).CrossRefGoogle Scholar
  5. 5.
    Odlyha, M., Investigation of the Binding Media of Paintings by Themoanalytical and Spectroscopic Techniques,——Ibid. 269/270:705–727 (1995).CrossRefGoogle Scholar
  6. 6.
    Elm, A.C., Deterioration of Dried Oil Films, Ind. Eng. Chem. 41:319–324 (1949).CrossRefGoogle Scholar
  7. 7.
    Crecelius, S.B., R.E. Kagarise, and A.L. Alexander, Drying Oil Oxidation Mechanism, Film Formation and Degradation,——Ibid. 47:1643–1649 (1955).CrossRefGoogle Scholar
  8. 8.
    Russel, G.A., Fundamental Processes of Autoxidation, J. Chem. Educ. 36:111–118 (1959).CrossRefGoogle Scholar
  9. 9.
    Frankel, E.N., Lipid Oxidation, Prog. Lipid Res. 19:1–22 (1980).CrossRefGoogle Scholar
  10. 10.
    Chan, H.W.S., The Mechanism of Autoxidation, in Autoxidation of Unsaturated Lipids, edited by H.W.S. Chan, Academic Press, London, 1987, pp. 1–16.Google Scholar
  11. 11.
    Frankel, E.N., Lipid Oxidation: Mechanisms Products, and Biological Significance, J. Am. Oil Chem. Soc. 61:1908–1917 (1984).Google Scholar
  12. 12.
    Frankel, E.N., W.E. Neff, and E. Selke, Analysis of Autoxidized Fats by Gas Chromatography-Mass Spectrometry: VII. Volatile Thermal Decomposition Products of Pure Hydroperoxides from Autoxidized and Photosensitized Oxidized Methyl Oleate, Linoleate, and Linolenate, Lipids 16:279–285 (1981).Google Scholar
  13. 13.
    Miyashita, K., N. Hara, K. Fujimoto, and T. Kaneda, Dimers Formed in Oxygenated Methyl Linoleate Hydroperoxides,——Ibid. 20:578–587 (1985).CrossRefGoogle Scholar
  14. 14.
    Muizebelt, W.J., J.C. Hubert, and R.A.M. Venderbosch, Mechanistic Study of Drying of Alkyd Resins Using Ethyl Linoleate as a Model Substance, Prog. Org. Coat. 24:263–279 (1994).CrossRefGoogle Scholar
  15. 15.
    Boyatsis, S., E. Ioakimoglou, P. Argitis, A. Fostiridou, and K. Papapanogiotou, Oxidation of Linseed Oil Medium in Paintings in the Presence of Copper Pigments: Spectroscopic and Chromatographic Studies of Thin Films, ACS Polymer Preprints 37(2):188–189 (1996).Google Scholar
  16. 16.
    Mallégol, J., J.L. Gardett, and J. Lemaire, Long-term Behavior of Oil-Based Varnishes and Paints. 1. Spectroscopic Analysis of the Curing of Drying Oils, J. Am. Oil Chem. Soc. 76:967–976 (1999).Google Scholar
  17. 17.
    Mallégol J., J.L. Gardette, and J. Lemaire, Long-term Behavior of Oil-Based Varnishes and Paints. 2. Fate of Hydroperoxides in Drying Oils,——Ibid. 77:249–255 (2000).Google Scholar
  18. 18.
    Lemaire, J., R. Arnaud, and J.L. Gardette, Le Viellissement des Polymères. II-Principes d'Etude du Photovieillissement, Rev. Gén. Caoutch. Plast. 613:87–92 (1981).Google Scholar
  19. 19.
    Tang, L., D. Sallet, and J. Lemaire, Photochemistry of Polyundecanamides. 1. Mechanisms of Photooxidation at Short and Long Wavelengths, Macromolecules 15:1432–1437 (1982).CrossRefGoogle Scholar
  20. 20.
    Carlsson, D.J., R. Brousseau, C. Zhang, and D.M. Wiles, Polyolefin Oxidation: Quantification of Alcohol and Hydroperoxide Products by Nitric Oxide Reactions, Polym. Degrad. Stab. 17:303–318 (1987).CrossRefGoogle Scholar
  21. 21.
    Lacoste, J., D. Vaillant, and D.J. Carlsson, Gamma-, Photo-, and Thermally-Initiated Oxidation of Isotactic Polypropylene, J. Polym. Sci.: Part A: Polym. Chem. 31:715–722 (1993).CrossRefGoogle Scholar
  22. 22.
    March, J., Advanced Organic Chemistry—Reactions, Mechanisms, and Structure, 4th edn., John Wiley & Sons, New York, 1992.Google Scholar
  23. 23.
    Avram, M., and G.D. Mateescu, Spectroscopie Infra-Rouge, Dunod, Paris, 1970.Google Scholar
  24. 24.
    Jenden, C.M., A Study of Some Artificially Weathered Paints by Laser Raman Spectroscopy, Polymer 27:217–224 (1986).CrossRefGoogle Scholar
  25. 25.
    Schieberle, P., W. Grosch, and J. Firl, Photolysis of Unsaturated Fatty Acid Hydroperoxides, in Oxygen Radicals in Chemistry and Biology, Walter de Gruyter and Co, Berlin, 1984, pp. 257–265.Google Scholar
  26. 26.
    Sullivan, W.F., Weatherability of Titanium Dioxide-Containing Paints, Progr. Org. Coat. 1:157–203 (1972).CrossRefGoogle Scholar
  27. 27.
    Grassie, N., and G. Scott, Photo-degradation, in Polymer Degradation and Stabilization, Cambridge University Press, Cambridge, 1985, pp. 68–85.Google Scholar
  28. 28.
    Piton, M., and A. Rivaton, Photooxidation of Polybutadiene at Long Wavelengths (λ>300nm), Polym. Degrad. Stab. 53:343–359 (1996).CrossRefGoogle Scholar
  29. 29.
    Shadidi, F., and R.B. Pegg, Hexanal as an Indicator of the Flavor Deterioration of Meat and Meat Products, in Lipids in Food Flavours, edited by C.T. Ho and T.G. Hartman, ACS Symposium Series 558, 1994, pp. 256–279.Google Scholar
  30. 30.
    McNeill, I.C., and W.T.K. Stevenson, The Structure and Stability of Oxidised Polybutadiene, Polym. Degrad. Stab. 11:123–143 (1985).CrossRefGoogle Scholar
  31. 31.
    Ranby, B., and J.F. Rabek, Photodegradation and Photo-oxidation of Particular Polymers, in Photodegradation, Photo-oxidation and Photostabilization of Polymers—Principles and Applications, John Wiley & Sons, London, 1975, pp. 120–253.Google Scholar
  32. 32.
    Gauvin, P., J. Lemaire, and D. Sallet, Propriétés des Hydroperoxydes dans les Homopolymères de Polyéthers Correspondants, Makromol. Chem. 188:1815–1824 (1987).CrossRefGoogle Scholar
  33. 33.
    Griffiths, P.J.F., J.G. Hughes, and G.S. Park, The Autoxidation of Poly(propylene oxides), Eur. Polym. J. 29:437–442 (1993).CrossRefGoogle Scholar
  34. 34.
    Mailhot, B., S. Morel, and J.L. Gardette, Photochemical Behaviour of Poly(vinylmethylether), Polym. Degrad. Stab. 62:117–126 (1998).CrossRefGoogle Scholar
  35. 35.
    Posada, F., J.L. Philippart, P. Kappler, and J.L. Gardette, Photooxidation of Cured Fluorinated Polymers—II. Comparison with Nonfluorinated Polyethers,——Ibid 53:19–31 (1996).CrossRefGoogle Scholar
  36. 36.
    Grassie, N., and G. Scott, Oxidation of Polymers, in Polymer Degradation and Stabilization, Cambridge University Press, Cambridge, 1985, pp. 86–118.Google Scholar
  37. 37.
    Nowik, W., Acides Aminés et Acides Gras sur Même Chromatogramme—Un Aute Regard sur l'Analyse des Liants en Peinture, Stud. Consery 40:120–126 (1995).CrossRefGoogle Scholar
  38. 38.
    White, R., and A. Roy, GC-MS and SEM Studies on the Effects of Solvent Cleaning on Old Master Paintings from the National Gallery, London,——Ibid. 43:159–176 (1998).CrossRefGoogle Scholar
  39. 39.
    Helme, J.P., La Science et l'Art: Evolution de la Technique de la Peinture à l'Huile Depuis son Invention Jusqu'à nos Jours, Rev. Fr. Corps Gras 41:13–19 (1994).Google Scholar
  40. 40.
    McKellar, J.F., and N.S. Allen, Photodegradation and Photooxidation Processes, in Photochemistry of Man-made Polymers, Applied Science Publishers, London, 1979, pp. 31–181.Google Scholar
  41. 41.
    René De La Rie E., Fluorescence of Paint and Varnish Layers (part II), Stud. Conserv. 27:65–69 (1982).CrossRefGoogle Scholar
  42. 42.
    Rakoff, H., F.L. Thomas, and L.E. Gast, Reversibility of Yellowing Phenomenon in Linseed-Based Paints, J. Coat. Technol. 51:25–28 (1979).Google Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • Jacky Mallégol
    • 1
  • Jean-Luc Gardette
    • 1
    Email author
  • Jacques Lemaire
    • 1
  1. 1.Laboratoire de Photochimie Moléculaire et Macromoléculaire, UMR CNRS 6505Université Blaise Pascal (Clermont II), Ensemble Scientifique des CézeauxAubière CedexFrance

Personalised recommendations