Skip to main content

Hexane elimination from soybean oil by continuous packed tower processing with supercritical CO2

Abstract

Hexane elimination is the most energy-consuming step in the industrial extraction of soybean oil. It utilizes three sets of equipment: two evaporation stages in series followed by a stripper at a pressure of about 0.07 bar. The final hexane residue in the oil is about 1000 ppm. We propose an alternative to the present process for hexane elimination, based on the extraction of the soybean oil/hexane mixture with supercritical CO2 in a continuous countercurrent packed tower. In this work, we tested a soybean oil/hexane mixture feed containing 10% by weight of hexane. Various pressures and temperatures of the column were tested to reduce hexane residue in the oil. The extraction process was demonstrated to be very effective for hexane separation. Indeed, at the bottom of the column we recovered soybean oil containing quantities of hexane as low as 20 ppm when we operated at 120 bar, 40°C. The effect of process parameters is also discussed.

This is a preview of subscription content, access via your institution.

References

  1. Brown, H.L., B.B. Hamel, and B.A. Hedeman, Energy Analysis of 108 Industrial Processes, Fairmont Press, Atlanta, 1985.

    Google Scholar 

  2. Perkins, E.G., Composition of Soybeans and Soybean Products, in Practical Handbook of Soybean Processing and Utilization, edited by D.R. Erikson, AOCS Press, Champaign, 1995, pp. 9–28.

    Google Scholar 

  3. O’Quinn, P.R., D.A. Knabe, E.J. Gregg, and E.W. Lusas, Nutritional Value for Swine of Soybean Meal Produced by Isopropyl Alcohol, J. Anim. Sci. 75:714–719 (1997).

    CAS  Google Scholar 

  4. Stahl, E., E. Schultz, and H.K. Mangold, Extraction of Seed Oils with Liquid and Supercritical CO2, J. Agric. Food Chem. 28:1153–1157 (1980).

    CAS  Article  Google Scholar 

  5. Friedrich, J.P., and G.R. List, Characterization of Soybean Oil Extracted by Supercritical CO2 and Hexane, Ibid. 30:192–193 (1982).

    CAS  Article  Google Scholar 

  6. Eggers, R., U. Sievers, and W. Stein, High Pressure Extraction of Oil Seed, J. Am. Oil Chem. Soc. 62:1222–1230 (1985).

    CAS  Google Scholar 

  7. Eisenbach, W.O., Extraction and Fractionation of Natural Products, in Proceedings of the 1st International Symposium on Supercritical Fluids, edited by M. Perrut, Nice, 1988, pp. 719–725.

  8. Snyder, J.M., J.P. Friedrich, and D.D. Christianson, Effect of Moisture and Particle Size on the Extractability of Oils from Seeds with Supercritical CO2, J. Am. Oil Chem. Soc. 61:1851–1856 (1984).

    CAS  Google Scholar 

  9. Taniguki, M., T. Tsuji, M. Shibata, and T. Kobayashi, Extraction of Wheat Germ with Supercritical Carbon Dioxide, Agric. Biol. Chem. 49:2367–2372 (1985).

    Google Scholar 

  10. Christianson, D.D., J.P. Friedrich, G.R. List, K. Warner, E.B. Bagley, A.C. Stringfellow, and G.E. Inglett, SFE of Dry Milled Corn Germ with Carbon Dioxide, J. Food Sci. 49:229–233 (1984).

    Article  Google Scholar 

  11. List, G.R., J.P. Friedrich, and J. Pominski, Characterization and Processing of Cottonseed Oil Obtained by Extraction with Supercritical Carbon Dioxide, J. Am. Oil Chem. Soc. 61:1847–1849 (1984).

    CAS  Google Scholar 

  12. Ramsay, M.E., J.T. Hsu, R.A. Novak, and W.J. Reigtler, Processing Rice Bran by SFE, Food Technol.:98–104 (1991).

  13. Perrut, M., J.Y. Clavier, M. Poletto, and E. Reverchon, Mathematical Modelling of Sunflower Seed Extraction by Supercritical CO2, Ind. Eng. Chem. Res. 36:430–436 (1997).

    CAS  Article  Google Scholar 

  14. Marrone, C., M. Poletto, E. Reverchon, and A. Stassi, Almond Oil Extraction by Supercritical CO2: Experiments and Modelling, Chem. Eng. Sci. 53:3711–3718 (1998).

    CAS  Article  Google Scholar 

  15. Reverchon, E., and L. Sesti Ossèo, Comparison of Processes for the Supercritical Carbon Dioxide Extraction of Oil from Soybean Seeds, J. Am. Oil Chem. Soc. 71:1007–1012 (1994).

    CAS  Google Scholar 

  16. Peters, S., Supercritical Fractionation of Lipids, in Supercritical Fluid Technology in Oil and Lipid Chemistry, edited by J.W. King and G.R. List, AOCS Press, Champaign, 1996, pp. 74–75.

    Google Scholar 

  17. Reverchon, E., Supercritical Fluid Extraction of Essential Oils and Related Materials, J. Supercrit. Fluids 10:1–37 (1997).

    CAS  Article  Google Scholar 

  18. Maxwell, R.J., Solubility Measurement of Lipid Constituents in Supercritical Fluids, in Supercritical Fluid Technology in Oil and Lipid Chemistry, edited by J.W. King and G.R. List, AOCS Press, Champaign, 1996, pp. 20–36.

    Google Scholar 

  19. Reverchon, E., A. Marciano, and M. Poletto, Fractionation of a Peel Oil Key Mixture by Supercritical CO2 in a Continuous Tower, Ind. Eng. Chem. Res. 36:4940–4948 (1997).

    CAS  Article  Google Scholar 

  20. ISO 9832; Animal and Vegetable Fats and Oils. Determination of Residual Technical Hexane Content, International Standardization Organization, Geneva, 1992.

  21. Somma, M., Post Processing di Olii Alimentari con CO2 Supercritica: Eliminazione dell’Esano, MSc. Thesis, University of Salerno, Salerno, Italy, 1997.

    Google Scholar 

  22. Wagner, Z., and I. Wichterle, High-Pressure Vapour-Liquid Equilibrium in Systems Containing Carbon Dioxide, 1-Hexene and n-Hexane, Fluid Phase Equil. 33:109–123 (1987).

    CAS  Article  Google Scholar 

  23. Li, Y.-H., K.H. Dillard, and R.L. Robinson, Vapor-Liquid Phase Equilibrium for Carbon Dioxide-n-Hexane at 40, 80 and 120°C, J. Chem. Eng. Data 26:53–55 (1981).

    CAS  Article  Google Scholar 

  24. Ohgaki, K., and T. Katayama, Isothermal Vapor-Liquid Equilibrium Data for Binary Systems Containing Carbon Dioxide at High Pressures: Methanol-Carbon Dioxide, n-Hexane-Carbon Dioxide, and Benzene-Carbon Dioxide Systems, Ibid. 21:53–55 (1976).

    CAS  Article  Google Scholar 

  25. Bamberger, T., J.C. Erickson, C.L. Cooney, and S.K. Kumar, Measurement and Model Prediction of Solubility of Pure Fatty Acids, Pure Triglycerides, and Mixtures of Triglycerides in Supercritical Carbon Dioxide, Ibid. 33:327–333 (1988).

    CAS  Article  Google Scholar 

  26. Treybal, R.E., Mass Transfer Operation, McGraw-Hill, Singapore, 1981, p. 309.

    Google Scholar 

  27. Onda, K., H. Takeuchi, and Y. Okumoto, Mass Transfer Coefficients Between Gas and Liquid Phases in packed Columns, J. Chem. Eng. Jpn. 1:56–62 (1968).

    CAS  Google Scholar 

  28. Chung, T.-M., L.L. Lee, and K.E. Starling, Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity, Ind. Eng. Chem. Fundam. 23:8–13 (1984).

    CAS  Article  Google Scholar 

  29. Jossi, J.A., L.I. Stiel, and G. Thodos, The Viscosity of Pure Substances in the Dense Gaseous and Liquid Phase, AIChE J. 8:59–63 (1962).

    CAS  Article  Google Scholar 

  30. Takahashi, S., Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures, J. Chem. Eng. Jpn. 7:417–420 (1974).

    CAS  Google Scholar 

  31. Perry, R.H., and D.W. Green, Chemical Engineers Handbook, 6th edn., McGraw-Hill, Singapore, 1985.

    Google Scholar 

  32. Reverchon, E., M. Poletto, L. Sesti Osséo, G. Donsì, and M. Somma, Processo per la eliminazione di solvente organico da olii alimentari con anidride carbonica supercritica, Italian Patent, SA 98A/000014 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Reverchon.

About this article

Cite this article

Reverchon, E., Poletto, M., Osséo, L.S. et al. Hexane elimination from soybean oil by continuous packed tower processing with supercritical CO2 . J Amer Oil Chem Soc 77, 9–14 (2000). https://doi.org/10.1007/s11746-000-0002-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-000-0002-z

Key Words

  • Desolventizing
  • hexane
  • oil purification
  • supercritical fluids