Skip to main content
Log in

Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta

  • Published:
Lipids

Abstract

The fatty acid composition of the seeds from Agathis robusta, an Australian gymnosperm (Araucariaceae), was determined by a combination of chromatographic and spectrometric techniques. These enabled the identification of small amounts of arachidonic (5,8,11,14–20∶4) and eicosapentaenoic (5,8,11,14,17–20∶5) acid for the first time in the seed oil of a higher plant. They were apparently derived from γ-linolenic (6,9,12–18∶3) and stearidonic (6,9,12,15–18∶4) acids, which were also present, via chain elongation and desaturation, together with other expected biosynthetic intermediates [bis-homo-γ-linolenic (8,11,14–20∶3) and bishomo-stearidonic (8,11,14,17–20∶4) acids]. Also present were a number of C20 fatty acids, known to occur in most gymnosperm families, i.e., 5,11–20∶2, 11,14–20∶2 (bishomo-linoleic), 5,11,14–20∶3 (sciadonic), 11,14,17–20∶3 (bishomo-α-linolenic), and 5,11,14,17–20∶4 (juniperonic) acids. In contrast to most other gymnosperm seed lipids analyzed so far, A. robusta seed lipids did not contain C18 Δ5-desaturated acids [i.e., 5,9–18∶2 (taxoleic), 5,9,12–18∶3 (pinolenic), or 5,9,12,15–18∶4 (coniferonic)]. These structures support the simultaneous existence of Δ6- and Δ5-desaturase activities in A. robusta seeds. The Δ6-ethylenic bond is apparently introduced into C18 polyunsaturated acids, whereas the Δ5-ethylenic bond is introduced into C20 polyunsaturated acids. A general metabolic pathway for the biosynthesis of unsaturated fatty acids in gymnosperm seeds is proposed. When compared to Bryophytes, Pteridophytes (known to contain arachidonic and eicosapentaenoic acids), and species from other gymnosperm families (without such acids), A. robusta appears as an “intermediate,” with the C18 Δ6-desaturase/C18→C20 elongase/C20 Δ5-desaturase system in common with the former subphyla, and the unsaturated C18→C20 elongase/C20 Δ5-desaturase system specific to gymnosperms. The following hypothetical evolutionary sequence for the C18 Δ6/Δ5-desaturase class in gymnosperm seeds is suggested: Δ6 (initial)→Δ6/Δ5 (intermediate)→Δ5 (final).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMOX:

dimethyloxazoline

ECL:

equivalent chain length

FAME:

fatry-acid methyl ester

GLC:

gas-liquid chromatography

HPLC:

high-performance liquid chromatography

MS:

mass spectrometry

NMR:

nuclear magnetic resonance

TAG:

triacylglycerol

TLC:

thin-layer chromatography

UPIFA:

unsaturated polymethylene-interrupted fatty acid

References

  1. Takagi, T., and Itabashi, Y. (1982) cis-5 Olefinic Unusual Fatty Acids in Seed Lipids of Gymnospermae and Their Distribution in Triacylglycerols, Lipids 17, 716–723.

    CAS  Google Scholar 

  2. Wolff, R.L., and Bayard, C.C. (1995) Fatty Acid Composition of Some Pine Seed Oils, J. Am. Oil Chem. Soc. 72, 1043–1046.

    CAS  Google Scholar 

  3. Wolff, R.L., Deluc, L.G., and Marpeau, A.M. (1996) Conifer Seeds: Oil Content and Fatty Acid Composition, J. Am. Oil Chem. Soc. 73, 765–771.

    Article  CAS  Google Scholar 

  4. Wolff, R.L., Deluc, L.G., Marqeau, A.M., and Comps, B. (1997) Chemotaxonomic Differentiation of Conifer Families and Genera Based on the Seed Oil Fatty Acid Composition: Multivariate Analyses, Trees 12, 57–65.

    Article  Google Scholar 

  5. Wolff, R.L., Comps, B., Marpeau, A.M., and Deluc, L.G. (1997) Taxonomy of Pinus Species Based on the Seed Oil Fatty Acid Compositions, Trees 12, 113–118.

    Google Scholar 

  6. Wolff, R.L., Comps, B., Deluc, L.G., and Marpeau, A.M. (1997) Fatty Acids of the Seeds from Pine Species of the Ponderosa-Banksiana and Halepensis Sections. The Peculiar Taxonomic Position of Pinus pinaster. J. Am. Oil Chem. Soc. 74, 45–50.

    Google Scholar 

  7. Wolff, R.L., and Marpeau, A.M. (1997) Δ5-Olefinic Acids in the Edible Seeds of Nut Pines (Pinus cembroides edulis) from the United States, J. Am. Oil Chem. Soc. 74, 613–614.

    CAS  Google Scholar 

  8. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) The Unusual Occurrence of 14-Methylhexadecanoic Acid in Pinaceae Seed Oils Among Plants, Lipids 32, 971–973.

    PubMed  CAS  Google Scholar 

  9. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) Bishomopinolenic (7,11,14–20∶3) Acid in Pinaceae Seed Oils, J. Am. Oil Chem. Soc. 74, 1583–1586.

    CAS  Google Scholar 

  10. Wolff, R.L. (1998) A Practical Source of Δ5-Olefinic Acids for Identification Purposes, J. Am. Oil Chem. Soc. 75, 891–892.

    CAS  Google Scholar 

  11. Wolff, R.L. (1998) Clarification on the Taxonomic Position of Sciadopitys verticillata Among Coniferophytes Based on the Seed Oil Fatty Acid Compositions, J. Am. Oil Chem. Soc. 75, 757–758.

    CAS  Google Scholar 

  12. Wolff, R.L., Christie, W.W., and Marpeau, A.M. (1999) Reinvestigation of the Polymethylene-Interrupted 18∶2 and 20∶2 Acids of Ginkgo biloba Seed Lipids, J. Am. Oil Chem. Soc. 76, 273–276.

    CAS  Google Scholar 

  13. Wolff, R.L., Pédrono, F., Marpeau, A.M., Christie, W.W., and Gunstone, F.D. (1998) The Seed Fatty Acid Composition and the Distribution of Δ5-Olefinic Acids in the Triacylglycerols of Some Taxaceae (Taxus and Torreya), J. Am. Oil Chem. Soc. 75, 1637–1641.

    CAS  Google Scholar 

  14. Wolff, R.L., Pédrono, F., Marpeau, A.M., and Gunstone, F.D. (1999) The Seed Fatty Acid composition and the Distribution of Δ5-Olefinic Acids in the Triacylglycerols of Some Taxares (Cephalotaxus and Podocarpus), J. Am. Oil Chem. Soc. 76, 469–473.

    CAS  Google Scholar 

  15. Wolff, R.L. (1998) Sources of 5,11,14–20∶3 (sciadonic) Acid, a Structural Analog of Arachidonic Acid, J. Am. Oil Chem. Soc. 76, 1901–1903.

    Google Scholar 

  16. Wolff, R.L., Pédrono, F., and Marpeau, A.M. (1999) Fatty Acid Compositions of Edible Pine Seeds with Emphasis on North American and Mexican Pines of the Cembroides Subsection, Oléagineux 6, 107–110.

    CAS  Google Scholar 

  17. Wolff, R.L., Pédrono, F., and Marpeau, A.M. (1999) Fokienia hodginsii Seed Oil, Another Source of Coniferonic (all-cis 5,9,12,15–18∶4) Acid, J. Am. Oil Chem. Soc. 76, 535–536.

    Google Scholar 

  18. Wolff, R.L., Christie, W.W., Pédrono, F., Marpeau, A.M., Tsevegsüren, N., Aitzetmüller, K., and Gunstone, F.D. (1999) Δ5-Olefinic Acids in the Seed Lipids from Four Ephedra Species and Their Distribution Between the α and β Positions of Triacylglycerols Characteristics Common to Coniferophytes and Cycadophytes, Lipids 34, 855–864.

    PubMed  CAS  Google Scholar 

  19. Lehtinen, O., Kärkkäinen, V.J., and Antila, M. (1962) 5,9,12-Octadecatrienoic Acid in Finnish Pine Wood and Tall Oil, Acta Chem. Fenn. (Suomen Kemistilehti) B35, 179–180.

    Google Scholar 

  20. Lehtinen, T., Elomaa, E., and Alhojarvi, J. (1963) Investigation into the Fatty Acid Composition of Tall Oil. III. cis-5,9-Octadecadienoic Acid, Acta Chem. Fenn. (Suomen Kemistilehti) B36, 154–155.

    Google Scholar 

  21. Ito, S., Koyama, Y., and Toyama, Y. (1963) The Separation and Structure Determination of an Eicosatrienoic and an Eicosadienoic Acid in Nagi Seed Oil, Bull. Chem. Soc. Japan 34, 1439–1444.

    Article  Google Scholar 

  22. Schlenk, H., and Gellerman, J.L. (1965) Arachidonic, 5,11,14,17-Eicosatetraenoic and Related Acids in Plants—Identification of Unsaturated Fatty Acids, J. Am. Oil Chem. Soc. 42, 504–511.

    CAS  Google Scholar 

  23. Wolff, R.L. (1997) Discussion of the Term “Unusual” When Discussing Δ5-Olefinic Acids in Plant Lipids, J. Am. Oil Chem. Soc. 74, 619.

    CAS  Google Scholar 

  24. Wolff, R.L. (1997) New Tools to Explore Lipid Metabolism, INFORM 8, 116–119.

    Google Scholar 

  25. Mustafa, J., Gupta, A., Ahmad, M.S., Jr., Ahmad, F., and Osman, S.M. (1986) Cyclopropenoid Fatty Acids in Gnetum scandens and Sterculia pallens Seed Oils, J. Am. Oil Chem. Soc. 63, 1191–1192.

    CAS  Google Scholar 

  26. Aitzetmüller, K., and Vosmann, K. (1998) Cyclopropenoic Fatty Acids in Gymnosperms: The Seed Oil of Welwitschia, J. Am. Oil Chem. Soc. 75, 1762–1765.

    Google Scholar 

  27. Lindgren, B., and Norin, T. (1969) Hartsets Kemi, Svensk Papperstidning 72, 143–153.

    CAS  Google Scholar 

  28. Wolff, R.L., Dareville, E., and Martin, J.C. (1997) Positional Distribution of Δ5-Olefinic Acids in Triacylglycerols from Conifer Seeds: General and Specific Enrichment in the sn-3 Position, J. Am. Oil Chem. Soc. 74, 515–523.

    CAS  Google Scholar 

  29. Berdeaux, O., and Wolff, R.L. (1996) Gas-Liquid Chromatography-Mass Spectrometry of the 4,4-Dimethyloxazoline Derivatives of Δ5-Unsaturated Polymethylene-Interrupted Fatty Acids from Conifer Seed Oils, J. Am. Oil Chem. Soc. 73, 1323–1326.

    Article  CAS  Google Scholar 

  30. Gunstone, F.D., Seth, S., and Wolff, R.L. (1995) The Distribution of Δ5 Polyene Acids in Some Pine Seed Oils Between the α- and β-Chains by 13C-NMR Spectroscopy, Chem. Phys. Lipids 78, 89–96.

    Article  CAS  Google Scholar 

  31. Gunstone, F.D., and Wolff, R.L. (1997) Conifer Seed Oils: Distribution of Δ5 Acids Between α and β Chains by 13C Nuclear Magnetic Resonance Spectroscopy, J. Am. Oil Chem. Soc. 73, 1611–1613.

    Article  Google Scholar 

  32. Gresti, J., Mignerot, C., Bézard, J., and Wolff, R.L. (1996) Distribution of Δ5-Olefinic Acids in the Triacylglycerols from Pinus koraiensis and Pinus pinaster Seed Oils, J. Am. Oil Chem. Soc. 73, 1539–1547.

    Article  CAS  Google Scholar 

  33. Blaise, P., Tropini, V., Farines, M., and Wolff, R.L. (1997) Positional Distribution of Δ5-Acids in Triacylglycerols from Conifer Seeds as Determinated by Partial Chemical Cleavage, J. Am. Oil Chem. Soc. 74, 165–168.

    CAS  Google Scholar 

  34. Blaise, P., Wolff, R.L., and Farines, M. (1997) Etude Régiospécifique de Triacylglycérols d’Huiles Végétales par Clivage Chimique et RMN 13C Haute Résolution, Oléagineux 4, 135–141.

    CAS  Google Scholar 

  35. Imbs, A.B., Nevshupova, N.V., and Pham, L.Q. (1998) Triacylglycerol Composition of Pinus koraiensis Seed Oil, J. Am. Oil Chem. Soc. 75, 865–870.

    CAS  Google Scholar 

  36. Berger, A., and German, J.B. (1991) Extensive Incorporation of Dietary Δ-5,11,14 Eicosatetraenoate into the Phosphatidylinositol Pool, Biochim. Biophys. Acta 1085, 371–376.

    PubMed  CAS  Google Scholar 

  37. Ikeda, I., Oka, T., Koba, K., Sugano, M., and Lie Ken Jie, M.S.F. (1992) 5c,11c,14c-Eicosatrienoic and 5c,11c,14c,17c-Eicosatetraenoic Acid of Biota orientalis Seed Oil Affect Lipid Metabolism in the Rat, Lipids 27, 500–504.

    PubMed  CAS  Google Scholar 

  38. Sugano, M., Ikeda, I., and Lie Ken Jie, M.S.F. (1992) Polyunsaturated Fatty Acid Regulation of Cholesterol Metabolism and Eicosanoid Production in Rats: Effects of Uncommon Fatty Acids, in Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress (Sinclair, A., and Gibson, R., eds.) pp. 268–270, AOCS Press, Champaign.

    Google Scholar 

  39. Berger, A., Fenz, R., and German, J.B. (1993) Incorporation of Dietary 5,11,14-Icosatrienoate into Various Mouse Phospholipid Classes and Tissues, J. Nutr. Biochem. 4, 409–420.

    Article  CAS  Google Scholar 

  40. Sugano, M., Ikeda, I., Wakamatsu, K., and Oka, T. (1994) Influence of Korean Pine (Pinus koraiesis)-Seed Oil Containing cis-5,cis-9,cis-12-Octadecatrienoic Acid on Polyunsaturated Fatty Acid Metabolism, Eicosanoid Production and Blood Pressure of Rats, Br. J. Nutr. 72, 775–783.

    Article  PubMed  CAS  Google Scholar 

  41. Sugano, M. (1995) Comparative Evaluation of Nutritional and Physiological Functions of Octadecatrienoic Acids, INFORM 6, 505 (Abstract).

    Google Scholar 

  42. Lai, L.T., Naiki, M., Yoshida, S.H., German, J.B., and Gerschwin, M.E. (1994) Dietary Platycladus orientalis Seed Oil Suppresses Anti-Erythrocyte Autoantibodies and Prolongs Survival of NZB Mice, Clin. Immunol. Immunopathol. 71, 293–302.

    Article  PubMed  CAS  Google Scholar 

  43. Ide, T., Murata, M., and Sugano, M. (1995) Octadecatrienoic Acids as the Substrates for the Key Enzymes in Glycerolipid Biosynthesis and Fatty Acid Oxidation in Rat Liver, Lipids 30, 755–762.

    PubMed  CAS  Google Scholar 

  44. Matsuo, N., Osada, K., Kodama, T., Lim, B.O., Nakao, A., Yamada, K., and Sugano, M. (1996) Effects of Gamma-Linolenic Acid and Its Positional Isomer Pinolenic Acid on Immune Parameters of Brown-Norway Rats, Prostaglandins Leukotrienes Essent. Fatty Acids 55, 223–229.

    Article  CAS  Google Scholar 

  45. Yoshida, S.H., Siu, J., Griffey, S.M., German, J.B., and Gerschwin, M.E. (1996) Dietary Juniperis virginiensis (sic) Seed Oil Decreased Pentobarbital-Associated Mortalities Among DBA/1 Mice Treated with Collagen-Adjuvant Emulsions, J. Lipid Mediat. Cell. Signal. 13, 283–293.

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka, T., Shibata, K., Hino, H., Murashita, T., Kayama, M., and Satouchi, K. (1997) Purification and Gas Chromatographic-Mass Spectrometric Characterization of Non-Methylene Interrupted Fatty Acid Incorporated in Rat Liver, J. Chromatogr. B. Biomed. Sci. Appl. 700, 1–8.

    Article  PubMed  CAS  Google Scholar 

  47. Wolff, R.L., Marpeau, A.M., Gunstone, F.D., Bézard, J., Farines, M., Martin, J.C., and Dallongeville, J. (1997) Particularités Structurales et Physiologiques d’Huiles Nouvelles, les Huiles de Graines de Conifères, Oléagineux 4, 65–70.

    CAS  Google Scholar 

  48. Asset, G., Baugé, E., Wolff, R.L., Fruchart, J.C., and J. Dallongeville (1997) Effects of Δ5-Olefinic Acids from Pinus pinaster Seed Oil on Lipoprotein Metabolism in ApoE Deficient Mice, Atherosclerosis 134, 36 (abstract).

    Article  Google Scholar 

  49. Tanaka, T., Hattori, T., Kouchi, M., Hirano, K., and Satouchi, K. (1998) Methylene-Interrupted Double Bond in Polyunsaturated Fatty Acid Is an Essential Structure for Metabolism by the Fatty Acid Chain Elongation System of Rat Liver, Biochim. Biophys. Acta 1393, 299–306.

    PubMed  CAS  Google Scholar 

  50. Chavali, S.R., Weeks, C.E., Zhong, W.W., and Forse, R.a. (1998) Increased Production of TNF-α and Decreased Levels of Dienoic Eicosanoids, IL-6 and IL-10 in Mice Fed Menhaden Oil and Juniper Oil Diets in Response to an Intraperitoneal Lethal Dose of LPS, Prostaglandins Leukotrienes Essent Fatty Acids 59, 89–93.

    Article  CAS  Google Scholar 

  51. Asset, G., Staels, B., Wolff, R.L., Baugé, E., Fruchart, J.C., and Dallongeville, J. (1999) Effects of Pinus pinaster and Pinus koraiensis Seed Oil Supplementation on Lipoprotein Metabolism in Rats, Lipids 34, 39–44.

    PubMed  CAS  Google Scholar 

  52. Aitzetmüller, K., and Tsevegsüren, N. (1994) Seed Fatty Acids, “Front-End”-Desaturase and Chemotaxonomy—A Case Study in the Ranunculaceae, J. Plant Physiol. 143, 538–543.

    Google Scholar 

  53. Aitzetmüller, K. (1995) Fatty Acid Patterns of Ranunculaceae Seed Oils: Phylogenetic Relationships, Plant Syst. Evol. [Suppl.] 9, 229–240.

    Google Scholar 

  54. Aitzetmüller, K. (1996) Seed Fatty Acids, Chemotaxonomy and Renewable Sources, in Oils-Fats-Lipids 1995; Proceedings of the 21st World Congress of the International Society for Fat Research, Vol. 1, pp. 117–120, Barnes & Associates, High Wycombe.

    Google Scholar 

  55. Farjon, A. (1998) Araucariaceae, in World Checklist and Bibliography of Conifers, pp. 17–27, The Royal Botanic Gardens, Kew.

    Google Scholar 

  56. Page, C.N. (1990) Gymnosperms: Coniferophytina (conifers and ginkgoids), in The Families and Genera of Vascular Plants (Kubitski, K., ed.), Vol. 1, Pteridophytes and Gymnosperms, (Kramer, K.U., and Green, P.S., eds.), Springer-Verlag, Berlin.

    Google Scholar 

  57. Chamberlain, C.J. (1961) Phylogeny, in Gymnosperms, Structure and Evolution, pp. 427–445, University of Chicago Press, Chicago, Johnson Reprint Corporation, New York.

    Google Scholar 

  58. Debazac, E.F., Araucariacées, in Manuel des Conifères, pp. 153–156, Ecole Nationale des Eaux et Forêts, Nancy, 1964.

    Google Scholar 

  59. Balazy, M., and Nies, A.S. (1989) Characterization of Epoxides of Polyunsaturated Fatty Acids by Mass Spectrometry via 3-Pyridinylmethyl Esters, Biomed. Enrivon. Mass Spectrom. 18, 328–336.

    Article  CAS  Google Scholar 

  60. Garrido, J.L., and Medina, I. (1994) One-Step Conversion of Fatty Acids into Their 2-Alkenyl-4,4-Dimethyloxazoline Derivatives Directly from Total Lipids, J. Chromatogr. 673, 101–105.

    Article  CAS  Google Scholar 

  61. Christie, W.W. (1998) Mass Spectrometry of Fatty Acids with Methylene-Interrupted Ene-Yne Systems, Chem. Phys. Lipids 94, 35–41.

    Article  CAS  Google Scholar 

  62. Christie, W.W. (1998) Gas Chromatography-Mass Spectrometry Methods for Structural Analysis of Fatty Acids, Lipids 33, 343–353.

    PubMed  CAS  Google Scholar 

  63. Vickery, J.R., Whitfield, F.B., Ford, G.L., and Kennett, B.H. (1984) The Fatty Acid Composition of Gymnospermae Seed and Leaf Oils, J. Am. Oil Chem. Soc. 61, 573–575.

    CAS  Google Scholar 

  64. Wolff, R.L. (1992) Resolution of Linolenic Acid Geometrical Isomers by Gas-Liquid Chromatography on a Capillary Column Coated with a 100% Cyanopropyl Polysiloxane Film (CPTMSil 88), J. Chromatogr. Sci. 30, 17–22.

    CAS  Google Scholar 

  65. Christie, W.W. (1997) Structural Analysis of Fatty Acids, in Advances in Lipid Methodology—Four (Christie, W.W., ed.) pp. 119–169, Oily Press, Dundee.

    Google Scholar 

  66. Nikolova-Damyanova, B. (1997) Reversed-Phase High-Performance Liquid Chromatography: General Principles and Application to the Analysis of Fatty Acids and Triacylglycerols, in Advances in Lipid Methodology—Four (Christie, W.W., ed.), pp. 193–251, Oily Press, Dundee.

    Google Scholar 

  67. Iyoda, J., and Noguchi, S. (1973) Fatty Acid Composition of Oils Derived from Nuts, J. Home Econ. 24, 169–175 (in Japanese).

    CAS  Google Scholar 

  68. Jamieson, G.R., and Reid, E.H. (1972) The Leaf Lipids of Some Conifer Species, Phytochemistry 11, 269–275.

    Article  CAS  Google Scholar 

  69. Wretsenjö, I., Svensson, L., and Christie, W.W. (1990) Gas Chromatographic-Mass Spectrometric Identification of the Fatty Acids in Borage Oil Using the Picolinyl Ester Derivatives, J. Chromatogr. 521, 89–98.

    Article  Google Scholar 

  70. Christie, W.W. (1989) Gas Chromatography and Lipids, The Oily Press, Dundee.

    Google Scholar 

  71. Yu, Q.T., Liu, B.N., Zhang, J.Y., and Huang, Z.H. (1989) Location of Double Bonds in Fatty Acids of Fish Oil and Rat Testis Lipids. Gas Chromatography-Mass Spectrometry of the Oxazoline Derivatives, Lipids 24, 79–83.

    PubMed  CAS  Google Scholar 

  72. Christie, W.W., Brechany, E.Y., and Holman, R.T. (1987) Mass Spectra of the Picolinyl Esters of Isomeric Mono-and Dienoic Fatty Acids, Lipids 22, 224–228.

    PubMed  CAS  Google Scholar 

  73. Christie, W.W. (1989) HPLC and GC-Mass Spectrometry in the Analysis of Fatty Acids, in Fats for the Future (Cambie, R.C., ed.) pp. 335–344, Ellis Horwood, Chichester.

    Google Scholar 

  74. Harvey, D.J. (1984) Picolinyl Derivatives for the Structural Determination of Fatty Acids by Mass Spectrometry. Applications to Polyenoic Acids. Hydroxy Acids, Di-Acids and Related Compounds, Biomed. Environ. Mass Spectrom. 11, 340–347.

    Article  CAS  Google Scholar 

  75. Zhang, J.Y., Yu, Q.T., Liu, B.N., and Huang, Z.H. (1988) Chemical Modification in Mass Spectrometry. IV. 2-Alkenyl-4,4-dimethyloxazolines as Derivatives for Double Bond Location of Long-Chain Olefinic Acids, Biomed. Environ. Mass Spectrom. 15, 33–44.

    Article  CAS  Google Scholar 

  76. Christie, W.W. (1998) Some Recent Advances in the Chromatographic Analysis of Lipids, Analysis 26, M34-M40.

    Article  CAS  Google Scholar 

  77. Christie, W.W., Brechany, E.Y., Johnson, S.B., and Holman, R.T. (1986) A Comparison of Pyrrolidide and Picolinyl Ester Derivatives for the Identification of Fatty Acids in Natural Samples by Gas Chromatography-Mass Spectrometry, Lipids 21, 657–661.

    PubMed  CAS  Google Scholar 

  78. Rubchevskaya, L.P., and Levin, P. (1984) Second Scientific Seminar: The Submicroscopic Structure of Wood and Its Role in Delineation Processes (title translated), Wood Chem. 4, 109–113 (in Russian).

    Google Scholar 

  79. Levin, E.D., Isaeva, E.V., and Cherepanova, V.E. (1990) Arachidonic Acid and Prostaglandins in Buds of Populus balsamifera, Phytochemistry 29, 2325–2326.

    Article  CAS  Google Scholar 

  80. Ekman, R. (1980) New Polyenoic Fatty Acids in Norway Spruce Wood, Phytochemistry 19, 147–148.

    Article  CAS  Google Scholar 

  81. Holmbom, B., and Ekman, R. (1978) Tall Oil Precursors of Scots Pine and Common Spruce and Their Change During Sulphate Pulping, Acta Acad. Abo. Ser. B 38, 1–11.

    Google Scholar 

  82. Afzal, M., Hassan, R.A.H., El-Kazimi, A.A., and Fattah, R.M.A. (1985) Allium sativum in the Control of Atherosclerosis, Agric. Biol. Chem. 49, 1187–1188.

    CAS  Google Scholar 

  83. Afzal, M., Ali, M., Hassan, R.A.H., Sweedan, N., and Dhai, M.S.I. (1991) Identification of Some Prostanoids in Aloe vera Extracts, Planta Med 57, 38–40.

    CAS  PubMed  Google Scholar 

  84. Janistyn, B. (1982) Gas Chromatographic-Mass Spectrometric Identification and Quantification of Arachidonic Acid in Wheat-Germ Oil, Planta 155, 342–344.

    Article  CAS  Google Scholar 

  85. Panossian, A.G. (1987) A Review of the Occurrence of Prostaglandins and Prostaglandin-Like Compounds in Plants, Prostaglandins 33, 363–381.

    Article  PubMed  CAS  Google Scholar 

  86. Groenewald, E.G., and van der Westhuizen, J. (1997) Prostaglandins and Related Substances in Plants, Bot. Rev. 63, 199–220.

    Google Scholar 

  87. Anderson, W.H., Gellerman, J.L., and Schlenk, H. (1972) Arachidonic and Eicosapentaenoic Acids in the Developing Gametophores and Sporophytes of the Moss, Mnium cuspidatum, Lipids 7, 710–714.

    CAS  Google Scholar 

  88. Gellerman, J.L., Anderson, W.H., and Schlenk, H. (1972) Highly Unsaturated Lipids of Mnium, Polytrichum, Marchantia and Matteucia, Bryologist 75, 550–557.

    Article  CAS  Google Scholar 

  89. Nichols, B.W. (1965) The Lipids of a Moss (Hypnum cupressiforme) and of the Leaves of the Green Holly (Ilex aquifolium), Phytochemistry 4, 769–772.

    Article  CAS  Google Scholar 

  90. Jamieson, G.R., and Reid, E.H. (1975) The Fatty Acid Composition of Fern Lipids, Phytochemistry 14, 2229–2232.

    Article  CAS  Google Scholar 

  91. Haigh, W.G., Safford, R., and James, A.T. (1969) Fatty Acid Composition and Biosynthesis in Ferns, Biochim. Biophys. Acta 176, 647–650.

    PubMed  CAS  Google Scholar 

  92. Wagner, H., and Friedrich, H. (1965) Über die Ungesättigten Fettsäuren von Moosen, Bärlappgewächen und Flechten, Naturwissenschaften 52, 305.

    Google Scholar 

  93. Wagner, H., and Friedrich, H. (1969) Isolierung von Arachidonsäure aus den Moosen Rhytidiadelphus triquetrus, Polytrichum commune und Fegatella conica, Phytochemistry 8, 1603.

    Article  CAS  Google Scholar 

  94. Gellerman, J.L., Anderson, W.H., Richardson, D.G., and Schlenk, H. (1975) Distribution of Arachidonic Acid and Eicosapentaenoic Acids in the Lipids of Mosses, Biochim. Biophys. Acta 388, 277–290.

    PubMed  CAS  Google Scholar 

  95. Karunen, P. (1977) Determination of Fatty Acid Composition of Spore Lipids of the Moss Polytrichum commune by Glass Capillary Column Gas Chromatography, Physiol. Plant. 40, 239–243.

    Article  CAS  Google Scholar 

  96. Groenewald, E.G., Krüger, G.h.J., de Wet, H., Botes, P.J., and van der Westhuizen, A.J. (1990) Detection of Prostaglandins F2α by Radioimmunoassay in Three South African Bryophytes and Its Relation to the Occurrence of Polyunsaturated Fatty Acids, South African J. Sci. 86, 142–153.

    Google Scholar 

  97. Al-Hassan, R.H., El-Saadawi, W.E., Ali, A.M., and Radwan, S.S. (1989) Arachidonic and Eicosapentaenoic Acids in Lipids of Bryum bicolor Dicks. Effects of Controlled Temperature and Illumination, Bryologist 92, 178–182.

    Article  Google Scholar 

  98. Bourreau, E. (1971) Les Sphénophytes, Biologie et Histoire Evolutive, pp. 109–112, Librarie Vuibert, Paris.

    Google Scholar 

  99. Florin, C.R. (1951) Evolution in Cordaites and Conifers, Acta Horti. Berg. 15, 285–388.

    Google Scholar 

  100. Stockey, R.A. (1982) The Araucariaceae: An Evolutionary Perspective, Rev. Paleobot. Palynol. 37, 133–154.

    Article  Google Scholar 

  101. Rothwell, G.W. (1982) New Interpretations of the Earliest Conifers, Rev. Paleobot. Palynol. 37, 7–28.

    Article  Google Scholar 

  102. Stockey, R.A. (1994) Mesozoic Araucariaceae: Morphology and Systematic Relationships, J. Plant Res. 107, 493–502.

    Article  Google Scholar 

  103. Knutzon, D.S., Thurmond, J.M., Huang, Y.-S., Chaudhary, S., Bobik, E.G., Jr., Chan, G.M., Kirchner, S.J., and Mukerji, P. (1998) Identification of Δ5-Desaturase from Mortierella alpina by Heterologous Expression in Bakers’ Yeast and Canola, J. Biol. Chem. 273, 29360–29366.

    Article  PubMed  CAS  Google Scholar 

  104. Jareonkitmongkol, S., Shimizu, S., and Yamada, H. (1993) Occurrence of Two Nonmethylene-Interrupted Δ5 Polyunsaturated Fatty Acids in a Δ6-Desaturase-Defective Mutant of the Fungus Mortierella alpina 1S-4, Biochim. Biophys. Acta 1167, 137–141.

    PubMed  CAS  Google Scholar 

  105. Cahoon, E.B., Lindqvist, Y., Schneider, G., and Shanklin, J. (1997) Redesign of Soluble Fatty Acid Desaturases from Plants for Altered Substrate Specificity and Double Bond Position, Proc. Natl. Acad. Sci. USA 94, 4872–4877.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Wolff.

About this article

Cite this article

Wolff, R.L., Christie, W.W., Pédrono, F. et al. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta . Lipids 34, 1083–1097 (1999). https://doi.org/10.1007/s11745-999-0460-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0460-y

Keywords

Navigation