Skip to main content


Log in

Effects of conjugated linoleic acid on oxygen diffusion-concentration product and depletion in membranes by using electron spin resonance spin-label oximetry

  • Published:


The effect of conjugated linoleic acid (CLA) on the relation between structure and function of membranes is described in this paper. Electron spin resonance (ESR) spin-label oximetry was used in the present study to evaluate if oxygen transport and oxygen depletion were affected by incorporation of CLA instead of linoleic acid into membrane phospholipids. Specifically, 1-stearoyl-2(9 cis, 11 trans-octadecadienoyl)-phosphorylcholine (SCLAPC) was incorporated into soy plant phosphatidylcholine (soy PC) or egg yolk PC (EYPC) bilayers. The use of spin labels attached to different carbons along the fatty acid chain makes it possible to carry out structural and oximetric determinations with the same test sample. For example, the incorporation of 5 mol% SCLAPC increased the oxygen diffusion-concentration product in soy PC or EYPC liposomes at 37°C, slightly decreased the ordering of the hydrocarbon chains at the C10 and C12 positions (in the region of the conjugated double bonds), and increased the rate of oxygen depletion from the aqueous medium. Similar results were not obtained by incorporating 5 mol% of 1-stearoyl-2-linoleoyl-PC (SLPC). In our model system, free-radical generation was initiated by extended incubation of the liposomes, by induction by 2,2′-azobis(2-amidinopropane)hydrochloride, or by ultraviolet irradiation of H2O2. The rate of consumption of molecular oxygen was studied by monitoring the oxygen concentration in the aqueous phases of the liposomes. The effect of 5 mol% SCLAPC in soy PC was significantly larger than 5 mol% SLPC in soy PC; the response patterns with soy PC and EYPC were similar. Furthermore, 5 mol% SCLAPC in 1-palmitoyl-2-linoleoyl-PC showed similar oxygen consumption to that observed with 5 mol% SCLAPC in EYPC. On the other hand, 5 mol% SCLAPC in synthetic PC membranes containing saturated or monounsaturated fatty acids showed low oxygen depletion rates. The perturbation of membrane structure and the increase of the relative oxygen diffusion-concentration products provided a potential mechanism by which CLA incorporated into membrane lipids could affect oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others





conjugated linoleic acid






electron spin resonance


egg yolk phosphatidylcholine






1-stearoyl-2-(9 cis, 11 trans-octadecadienoyl)-phosphorylcholine





soy PC:

soy plant phosphatidylcholine


4 (N,N-dimethyl-N-(2-hydroxylethyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl




  1. Ha, Y.L., Storkson, J., and Pariza, M.W. (1990) Inhibition of Benzo(a)pyrene-Induced Mouse Forestomach Neoplasia by Conjugated Dienoic Derivatives of Linoleic Acid, Cancer Res. 50, 1097–1101.

    PubMed  CAS  Google Scholar 

  2. Ip, C., Chin, S.F., Scimeca, J.A., and Pariza, M.W. (1991) Mammary Cancer Prevention by Conjugated Dienoic Derivative of Linoleic Acid, Cancer Res. 51, 6118–6124.

    PubMed  CAS  Google Scholar 

  3. Lee, K.N., Kritchevsky, D., and Pariza, M.W. (1994) Conjugated Linoleic Acid and Atherosclerosis in Rabbits, Atherosclerosis 108, 19–25.

    Article  PubMed  CAS  Google Scholar 

  4. Nicolosi, R.J., Rogers, E.J., Kritchevsky, D., Scimeca, J.A., and Huth, P.J. (1997) Dietary Conjugated Linoleic Acid Reduces Plasma Lipoproteins and Early Aortic Atherosclerosis in Hypercholesterolemic Hamsters, Artery 22, 266–277.

    PubMed  CAS  Google Scholar 

  5. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    PubMed  CAS  Google Scholar 

  6. Dugan, M.E.R., Aalhus, J.L., Schaefer, A.L., and Kramer, J.K.G. (1997) Effect of Conjugated Linoleic Acid on Fat to Lean Repartitioning and Feed Conversion in Pigs, Can. J. Anim. Sci. 77, 723–725.

    Article  CAS  Google Scholar 

  7. Li, Y., and Watkins, B.A. (1998) Conjugated Linoleic Acids Alter Bone Fatty Acid Composition and Reduce ex vivo Prostaglandin E2 Biosynthesis in Rats Fed n−6 or n−3 Fatty Acids, Lipids 33, 417–425.

    PubMed  CAS  Google Scholar 

  8. Houseknecht, K.L., Vanden Heuvel, J.P., Moya-Camarena, S.Y., Portocarrero, C.P., Peck, L.W., Nickel, K.P., and Belury, M.A., (1998) Dietary Conjugated Linoleic Acid Normalizes Impaired Glucose Tolerance in the Zucker Diabetic Fatty fa/fa Rat, Biochem. Biophys. Res. Commun. 244, 678–682.

    Article  PubMed  CAS  Google Scholar 

  9. van den Berg, J.J.M., Cook, N.E., and Tripple, D.L. (1995) Reinvestigation of the Antioxidant Properties of Conjugated Linoleic Acid, Lipids 30, 599–605.

    PubMed  Google Scholar 

  10. Chen, Z.Y., Chan, P.T., Kwan, K.Y., and Zhang, A. (1997) Reassessment of the Antioxidant Properties of Conjugated Linoleic Acid, J. Am. Oil. Chem. Soc. 73, 749–753.

    Google Scholar 

  11. Zhang, A., and Chen, Z.Y. (1997) Oxidative Stability of Conjugated Linoleic Acid Relative to Other Polyunsaturated Fatty Acids, J. Am. Oil Chem. Soc. 73, 1611–1613.

    Google Scholar 

  12. Sugano, M., Tsujita, A., Yamasaki, M., Yamada, K., Ikeda, I., and Kritchevsky, D. (1997) Lymphatic Recovery, Tissue Distribution, and Metabolic Effects of Conjugated Linoleic Acid in Rats, Nutr. Biochem. 8, 38–43.

    Article  CAS  Google Scholar 

  13. Kramer, J.K.G., Sehat, N., Dugan, M.E.R., Mossoba, M.M., Yurawecz, M.P., Roach, J.A.G., Eulitz, K., Aalhus, J.L., Schaefer, A.L., and Ku, Y. (1998) Distributions of Conjugated Linoleic Acid (CLA) Isomers in Tissue Lipid Classes of Pigs Fed a Commercial CLA Mixture Determined by Gas Chromatography and Silver Ion-High-Performance Liquid Chromatography, Lipids 33, 549–558.

    PubMed  CAS  Google Scholar 

  14. Visonneau, S., Cesano, A., Tepper, S.A., Scimeca, J.A., Santoli, D., and Kritchevsky, D. (1997) Conjugated Linoleic Acid Suppresses the Growth of Human Breast Adenocarcinoma Cells in SCID Mice, Anticancer Res. 17, 969–974.

    PubMed  CAS  Google Scholar 

  15. Porter, N.A. (1984) Chemistry of Lipid Peroxidation, Meth. Enzymol. 105, 273–382.

    PubMed  CAS  Google Scholar 

  16. Gardner, H.W. (1989) Oxygen Radical Chemistry of Polyunsaturated Fatty Acids, Free Radicals Biol. Med. 7, 65–86.

    Article  CAS  Google Scholar 

  17. Barclay, L.R.C. (1993). Model Biomembranes: Quantitative Studies of Peroxidation, Antioxidation Action, Partitioning, and Oxidative Stress, Can. J. Chem. 71, 1–16.

    Article  CAS  Google Scholar 

  18. Niki, E., Noguchi, N., and Gotoh, N. (1993) Dynamics of Lipid Peroxidation and Its Inhibition by Antioxidants, Biochem. Soc. Trans. 21, 313–317.

    PubMed  CAS  Google Scholar 

  19. Kamp, D.W., Graceffa, P., Pryor, W.A., Weitzman, S.A. (1992) The Role of Free Radicals in Asbestos-Induced Diseases, Free Radicicials Biol. Med. 12, 293–315.

    Article  CAS  Google Scholar 

  20. Halliwell, B. (1996) Oxidative Stress, Nutrition and Health. Experimental Strategies for Optimization of Nutritional Antioxidant Intake in Humans, Free Radical Res. 25, 57–74.

    CAS  Google Scholar 

  21. Subczynski, W.K., and Kusumi, A.K. (1985) Detection of Oxygen Consumption During Very Early Stages of Lipid Peroxidation by ESR Nitroxide Spin Probe Method, Biochim. Biophys. Acta 821, 259–263.

    Article  PubMed  CAS  Google Scholar 

  22. Kalyanaraman, B., Feix, J.B., Sieser, F., Thomas, J.P., and Girotti, A.W. (1987) Photodynamic Action of Merocyanine 540 on Artificial and Natural Cell Membranes: Involvement of Singlet Molecular Oxygen, Proc. Natl. Acad. Sci. USA 84, 2999–3003.

    Article  PubMed  CAS  Google Scholar 

  23. Yashida, Y., Kashiba, K., and Niki, E. (1994) Free Radical-Mediated Oxidation of Lipids Induced by Hemoglobin in Aqueous Dispersions, Biochim. Biophys. Acta 1201, 165–172.

    Google Scholar 

  24. McCord, J.M. (1985) Oxygen-Derived Free Radicals in Postischemic Tissue Injury, New Engl. J. Med. 312, 159–163.

    Article  PubMed  CAS  Google Scholar 

  25. Ziegler, D.M. (1988) Mechanism for the Generation of Oxygen Radicals by Drugs, in Oxygen Radicals in Biology and Medicine (Simic, M.G., Taylor, A., Ward, J.F., and von Sonntag, C., eds.), pp. 729–739, Plenum, New York.

    Google Scholar 

  26. Swartz, H.M., and Clarkson, R.B. (1998) The Measurement of Oxygen in vivo Using EPR Techniques, Phys. Med. Biol. 43, 1957–75.

    Article  PubMed  CAS  Google Scholar 

  27. Hyde, J.S., and Subczynski, W.K. (1989) Spin Label Oximetry, in Biological Magnetic Resonance 8: Spin Labeling Theory and Applications (Berliner, L.J., and Reuben, J. eds.), pp. 399–425, Plenum, New York.

    Google Scholar 

  28. Windrem, D.A., and Plachy, W.Z. (1980) The Diffusion-Solubility of Oxygen in Lipid Bilayers, Biochim. Biophys. Acta 600, 655–665.

    Article  PubMed  CAS  Google Scholar 

  29. Subczynski, W.K., and Hyde, J.S. (1984) Diffusion of Oxygen in Water and Hydrocarbons Using an Electron Spin Resonance Spin-Label Technique, Biophys. J. 45, 743–748.

    Article  PubMed  CAS  Google Scholar 

  30. Halpern, H.J., Yu, C., Peric, M., Barth, E., Grdina, D.J., and Teicher, B.A. (1994) Oxymetry Deep in Tissues with Low-Frequency Electron Paramagnetic Resonance, Proc. Natl. Acad. Sci. USA 91, 13047–13051.

    Article  PubMed  CAS  Google Scholar 

  31. Swartz, H.M., Bacic, G., Friedman, B.J., Goda, F., Grinberg, O.Y., Hoopes, P.J., Jiang, J.J., Liu, K.J., Nakashima, T., O’Hara, J., and Walczak, T. (1994) Measurement of po2 in vivo, Including Human Subjects, by Electron Paramagnetic Resonance, Adv. Exp. Med. Biol. 361, 119–128.

    PubMed  CAS  Google Scholar 

  32. Smirnov, A.I., Clarkson, R.B., and Belford, R.L (1996) EPR Linewidth (T2) Method to Measure Oxygen Permeability of Phospholipid Bilayers and Its Use to Study the Effect of Low Ethanol Concentrations, J. Magn. Reson. 111, 149–157.

    Article  CAS  Google Scholar 

  33. Yin, J.-J., Smith, M.J., Eppley, R.M., Troy, A.L., Page, S.W., and Sphon, J.A. (1996) Effects of Fumonisin B1 and Fully Hydrolyzed Fumonisin B1 (AP1) on Membranes: A Spin-Label Study, Arch. Biochem. Biophys. 335, 13–22.

    Article  PubMed  CAS  Google Scholar 

  34. Yin, J.-J. Smith, M.J., Eppley, R.M., Page, S.W., and Sphon, J.A. (1996) Effects of Fumonisin B1 on Oxygen Transport in Membranes, Biochim. Biophys. Res. Comm. 225, 250–255.

    Article  CAS  Google Scholar 

  35. Yin, J.-J., Smith, M.J., Eppley, R.M., Page, S.W., and Sphon, J.A. (1998) Effects of Fumonisin B1 on Lipid Peroxidation in Membranes, Biochim. Biophys. Acta 1371, 134–142.

    Article  PubMed  CAS  Google Scholar 

  36. Kusumi, A., Subczynski, W.K., Pasenkiewicz-Gierula, M., Hyde, J.S., and Merkle, H. (1986) Spin-Label Studies on Phosphatidylcholine-Cholesterol Membranes: Effects of Alkyl Chain Length and Unsaturation in the Fluid Phase, Biochim. Biophys. Acta 854, 307–317.

    Article  PubMed  CAS  Google Scholar 

  37. Popp, C.A., and Hyde, J.S. (1981) Effects of Oxygen on EPR Spectra of Nitroxide Spin Label Probes on Model Membranes, J. Magn. Reson. 43, 249–258.

    CAS  Google Scholar 

  38. Hubbell, W.L., and McConnell, H.M. (1971) Molecular Motion in Spin-Labeled Phospholipids and Membranes, J. Am. Chem. Soc. 93, 314–326.

    Article  PubMed  CAS  Google Scholar 

  39. Marsh, D. (1981) Electron Spin Resonance: Spin Labels, in Membrane Spectroscopy (Grell, E., ed.), pp. 51–142. Springer-Verlag, Berlin.

    Google Scholar 

  40. Altenbach, C., Flitsch, S.L., Khorana, H.G., and Hubbell, W.L. (1989) Structural Studies on Transmembrane Proteins. 2. Spin Labeling of Bacteriorhodopsin Mutants at Unique Cysteines, Biochemistry 28, 7806–7812.

    Article  PubMed  CAS  Google Scholar 

  41. Subczynski, W.K., and Hyde, J.S. (1981) The Diffusion-Concentration Product of Oxygen in Lipid Bilayers Using the Spin-Label T1 Method, Biochim. Biophys. Acta 643, 283–291.

    Article  PubMed  CAS  Google Scholar 

  42. Subczynski, W.K., Hopwood, L.E., and Hyde, J.S. (1992) Is the Mammalian Cell Plasma Membrane a Barrier to Oxygen Transport? J. Gen. Physiol. 100, 69–87.

    Article  PubMed  CAS  Google Scholar 

  43. Takahashi, M., Tsuchiya, J., Niki, E., and Urano, S. (1988) Action of Vitamin E as Antioxidant in Phospholipid Liposomal Membranes as Studied by Spin Label Technique, J. Nutr. Sci. Vitaminol. 34, 25–34.

    PubMed  CAS  Google Scholar 

  44. Krainev, A.G., and Bigelow, D.J. (1996) Comparison of 2,2′-Azobis(2-amidinopropane)hydrochloride (AAPH) and 2,2′-Azobis(2,4-dimethylvaleronitrile) (AMVN) as Free-Radical Initiators—A Spin-Trapping Study, J. Chem. Soc., Perkin. Trans. 2, 747–754.

    Google Scholar 

  45. Yurawecz, M.P., Hood, J.K., Mossoba, M.M., Roach, J.A.G., and Ku, Y. (1995) Furan Fatty Acids Determined as Oxidation Products of Conjugated Octadecadienoic Acid, Lipids 30, 595–598.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jun Jie Yin.

About this article

Cite this article

Yin, J.J., Mossoba, M.M., Kramer, J.K.G. et al. Effects of conjugated linoleic acid on oxygen diffusion-concentration product and depletion in membranes by using electron spin resonance spin-label oximetry. Lipids 34, 1017–1023 (1999).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: