Skip to main content
Log in

Δ5-Olefinic acids in the seed lipids from four Ephedra species and their distribution between the α and β positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes

  • Published:
Lipids

Abstract

The fatty acid compositions of the seed lipids from four Ephedra species, E. nevadensis, E. viridis, E. przewalskii, and E. gerardiana (four gymnosperm species belonging to the Cycadophytes), have been established with an emphasis on Δ5-unsaturated polymethylene-interrupted fatty acids (Δ5-UPIFA). Mass spectrometry of the picolinyl ester derivatives allowed characterization of 5,9- and 5,11–18∶2; 5,9,12–18∶3; 5,9,12,15–18∶4; 5,11–20∶2; 5,11,14–20∶3; and 5,11,14,17–20∶4 acids. Δ5-UPIFA with a Δ11-ethylenic bond (mostly C20 acids) were in higher proportions than δ5-UPIFA with a δ9 double bond (exclusively C18 acids) in all species. The total δ5-UPIFA content was 17–31% of the total fatty acids, with 5, 11, 14–20∶3 and 5, 11, 14, 17–20∶4 acids being the principal δ5-UPFIA isomers. The relatively high level of cis-vaccenic (11–18∶1) acid found in Ephedra spp. seeds, the presence of its δ5-desaturation product, 5, 11–18∶2 acid (proposed trivial name: ephedrenic acid), and of its elongation product, 13–20∶1 acid, were previously shown to occur in a single other species, Ginkgo biloba, among the approximately 170 gymnosperm species analyzed so far. Consequently, Ephedraceae and Coniferophytes (including Ginkgoatae), which have evolved separately since the Devonian period (≈300 million yr ago), have kept in common the ability to synthesize C18 and C20 δ5-UPIFA. We postulate the existence of two δ5-desaturases in gymnosperm seeds, one possibly specific for unsaturated acids with a δ9-ethylenic bond, and the other possibly specific for unsaturated acids with a δ11-ethylenic bond. Alternatively, the δ5-desaturases might be specific for the chain length with C18 unsaturated acids on the one hand and C20 unsaturated acids on the other hand. The resulting hypothetical pathways for the biosynthesis of δ5-UPIFA in gymnosperm seeds are only distinguished by the position of 11–18∶1 acid. Moreover, 13C nuclear magnetic resonance spectroscopy of the seed oil from two Ephedra species has shown that δ5-UPIFA are essentially excluded from the internal position of triacylglycerols, a characteristic common to all of the Coniferophytes analyzed so far (more than 30 species), with the possibility of an exclusive esterification at the sn-3 position. This structural feature would also date back to the Devonian period, but might have been lost in those rare angiosperm species containing δ5-UPIFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ag-TLC:

argentation thin-layer chromatography

FAME:

fatty acid methyl ester

GLC:

gas-liquid chromatography

MS:

mass spectrometry

NMR:

nuclear magnetic resonance

TAG:

triacylglycerol

UPIFA:

unsaturated polymethylene-interrupted fatty acid

References

  1. Page, C.N. (1990) Gymnosperms: Coniferophytina (Conifers and Ginkgoids), in The Families and Genera of Vascular Plants, K. Kubitzki, ed., Pteridophytes and Gymnosperms (Kramer, K.U., and Green, P.S., eds.) Springer-Verlag, Berlin, Vol. 1, pp. 279–391.

    Google Scholar 

  2. Ehrendorfer, F. (1971) Systematik und Evolution: Spermatophyta. Samenpflanzen, in Lehrbuch der Botanik für Hochschulen (“Strasburger”) G. Fischer, Stuttgart.

    Google Scholar 

  3. Takagi, T., and Itabashi, Y. (1982) cis-5 Olefinic Unusual Fatty Acids in Seed Lipids of Gymnospermae and Their Distribution in Triacylglycerols, Lipids 17, 716–723.

    CAS  Google Scholar 

  4. Wolff, R.L., and Bayard, C.C. (1995) Fatty Acid Composition of Some Pine Seed Oils, J. Am. Oil Chem. Soc. 72, 1043–1046.

    CAS  Google Scholar 

  5. Wolff, R.L., Deluc, L.G., and Marpeau, A.M. (1996) Conifer Seeds: Oil Content and Fatty Acid Distribution, J. Am. Oil Chem. Soc. 73, 765–771.

    Article  CAS  Google Scholar 

  6. Wolff, R.L., Comps, B., Deluc, L.G., and Marpeau, A.M. (1997) Fatty Acids of the Seeds from Pine Species of the Ponderosa-Banksiana and Halepensis Sections. The Peculiar Taxonomic Position of Pinus pinaster, J. Am. Oil Chem. Soc. 75, 45–50.

    Google Scholar 

  7. Wolff, R.L., Deluc, L.G., Marpeau, A.M., and Cops, B. (1997) Chemotaxonomic Differentiation of Conifer Families and Genera Based on the Seed Oil Fatty Acid Compositions: Multivariate Analyses, Trees 12, 57–65.

    Article  Google Scholar 

  8. Wolff, R.L., Comps, B., Marpeau, A.M., and Deluc, L.G. (1997) Taxonomy of Pinus Species Based on the Seed Oil Fatty Acid Compositions, Trees 12, 113–118.

    Google Scholar 

  9. Wolff, R.L., and Marpeau, A.M. (1997) δ5-Olefinic Acids in the Edible Seeds of Nut Pine (Pinus cembroides edulis) from the United States, J. Am. Oil Chem. Soc. 74, 613–614.

    CAS  Google Scholar 

  10. Wolff, R.L., Pédrono, F., and Marpeau, A.M. (1999) Fatty Acid Composition of Edible Pine Seeds with Emphasis on North American and Mexican Pines of the Cembroides Subsection, Oléagineaux Corps Gras Lipides 6, 107–110.

    CAS  Google Scholar 

  11. Wolff, R.L., Pédrono, F., Marpeau, A.M., Christie, W.W., and Gunstone, F.D. (1998) The Seed Fatty Acid Composition and the Distribution of δ5-Olefinic Acids in the Triacylglycerols of Some Taxaceae (Taxus and Torreya). J. Am. Oil Chem. Soc. 75, 1637–1641.

    CAS  Google Scholar 

  12. Wolff, R.L., Pédrono, F., Marpeau, A.M., and Gunstone, F.D. (1999) The Seed Fatty Acid Composition and the Distribution of δ5-Olefinic Acids in the Triacylglycerols of Some Taxares (Cephalotaxus and Podocarpus), J. Am. Oil Chem. Soc. 76, 469–473.

    CAS  Google Scholar 

  13. Wolff, R.L., Christie, W.W., and Marpeau, A.M. (1999) Reinvestigation of the Polymethylene-Interrupted 18∶2 and 20∶2 Acids in Ginkgo biloba Seed Lipids, J. Am. Oil Chem. Soc. 76, 273–276.

    CAS  Google Scholar 

  14. Wolff, R.L., Pédrono, F., and Marpeau, A.M. (1999) Fokienia hodginsii Seed Oil, Another Source of All-cis 5, 9, 12, 15–18∶4 (Coniferonic) Acid, J. Am. Oil Chem. Soc. 76, 535–536.

    Google Scholar 

  15. Jamieson, G.R., and Reid, E.H. (1972) The Leaf Lipid of Some Conifer Species, Phytochemistry 11, 269–275.

    Article  CAS  Google Scholar 

  16. Smith, C.R., Jr., Kleiman, R., and Wolff, I.A. (1968) Caltha palustris L. Seed Oil. A Source of Four Fatty Acids with cis-5-Unsaturation, Lipids 3, 37–42.

    CAS  PubMed  Google Scholar 

  17. Aitzetmüller, K., and Tsevegsüren, N. (1994) Seed Fatty Acids, “Front-End”—Desaturases and Chemotaxonomy—A Case Study in the Ranunculaceae, J. Plant Physiol. 143, 538–543.

    Google Scholar 

  18. Aitzetmüller, K. (1997) Seed Oil Fatty Acids in the Labiatae, Lamiales Newsletter 5, 3–5.

    Google Scholar 

  19. Smith, C.R., Jr., Freidinger, R.M., Hagemann, J.W., Spencer, G.F., and Wolff, I.A. (1969) Teucrium depressum Seed Oil: A New Source of Fatty Acids With Delta-5-Unsaturation, Lipids, 4, 462–465.

    PubMed  CAS  Google Scholar 

  20. Spencer, G.F., and Earle, F.R. (1972) The Abundance of cis-5-Octadecenoic Acid in Dioscoreophyllum cumminsii Seed Oil, Lipids 7, 435–536.

    CAS  Google Scholar 

  21. Knapp, S.J., and Crane, J. (1995) Fatty Acid Diversity of Section Inflexae Limnanthes (Meadowfoam), Ind. Crops Prod. 4, 219–227.

    Article  CAS  Google Scholar 

  22. Badami, R.C., and Patil, K.B. (1981) Structure and Occurrence of Unusual Fatty Acids in Minor Seed Oils, Prog. Lipid Res. 19, 119–153.

    Article  Google Scholar 

  23. Aitzetmüller, K. (1995) Fatty Acid Patterns of Ranunculaceae Seed Oils: Phylogenetic Relationships, Plant Syst. Evol. 9, 229–240.

    Google Scholar 

  24. Pohl, P., and Wagner, H. (1972) Fettsaüren im Pflanzen- und Tierreich (eine übersicht) II: Trans-ungesättigte, Alkin-, Hydroxy-, Epoxy, Oxo-, Cyclopropan- und Cyclopropen-Fettsaüren, Fette Seifen Anstrichm. 74, 541–550.

    Article  CAS  Google Scholar 

  25. Hegnauer, R. (1990) Chemotaxonomie der Pflanzen, Birkhäuser, Basel.

    Google Scholar 

  26. Aitzetmüller, K. (1996) Seed Fatty Acids, Chemotaxonomy and Renewable Sources, in Oils-Fats-Lipids 1995: Proceedings of the 21st World Congress of the International Society for Fat Research, Barnes & Associates, High Wycombe, U.K., Vol. 1, pp. 117–120.

  27. Kleiman, R., Spencer, G.F., Earle, F.R., and Wolff, I.A. (1967) Fatty Acid Composition of Ephedra campylopoda Seed Oil, Chem. Ind., 1326–1327.

  28. Plattner, R.D., Spencer, G.F., and Kleiman, R. (1976) Double Bond Location in Polyenoic Fatty Esters through Partial Oxymercuration, Lipids 11, 222–227.

    CAS  Google Scholar 

  29. Schlenk, H., and Gelleman, J.L. (1965) Arachidonic, 5, 11, 14, 17-Eicosatetraenoic and Related Acids in Plants-Identification of Unsaturated Fatty Acids, J. Am. Oil Chem. Soc. 42, 504–511.

    CAS  Google Scholar 

  30. Litchfield, C. (1968) Triglyceride Analysis by Consecutive Liquid-Liquid Partition and Gas-Liquid Chromatography. Ephedra nevadensis Seed Fat, Lipids 3, 170–177.

    CAS  PubMed  Google Scholar 

  31. Daulatabad, C.D., Hiremath, S.C., and Ankalgi, R.F. (1985) Component Fatty Acids of Welwitschia mirabilis, Hook, f. Seed Oil, Fette Seifen Anstrichm. 87, 171–172.

    CAS  Google Scholar 

  32. Mustafa, J., Gupta, A., Ahmad, M.S., Jr., Ahmad, F., and Osman, S.M. (1986) Cyclopropenoid Fatty Acids in Gnetum scandens and Sterculia pallens Seed Oils, J. Am. Oil Chem. Soc. 63, 1191–1192.

    CAS  Google Scholar 

  33. Berry, S.K. (1980) Cyclopropene Fatty Acids in Gnetum gnemon (L.) Seeds and Leaves, J. Sci. Food Agric. 31, 657–662.

    Article  PubMed  CAS  Google Scholar 

  34. Vickery, J.R., Whifield, F.B., Ford, G.L., and Kennett, B.H. (1984) The Fatty Acid Composition of Gymnospermae Seed and Leaf Oils, J. Am. Oil Chem. Soc. 61, 573–575.

    CAS  Google Scholar 

  35. Gunstone, F.D., Seth, S., and Wolff, R.L. (1995) The Distribution of 5 Polyene Fatty Acids in Some Pine Seed Oils Between the α- and β-Chains by 13C-NMR Spectroscopy, Chem. Phys. Lipids 78, 89–96.

    Article  CAS  Google Scholar 

  36. Blaise, P., Tropini, V., Farine, M., and Wolff, R.L. (1997) Positional Distribution of δ5-Unsaturated Polymethylene-Interrupted Fatty Acids in Triacylglycerols from Conifer Seeds as Determined by Partial Chemical Cleavage, J. Am. Oil Chem. Soc. 74, 165–168.

    CAS  Google Scholar 

  37. Wolff, R.L., Dareville, E., and Martin, J.C. (1997) Positional Distribution of δ5-Olefinic Acids in Triacylglycerols from Conifer Seed Oils: General and Specific Enrichment in the sn-3 Position, J. Am. Oil Chem. Soc. 74, 515–523.

    CAS  Google Scholar 

  38. Hirata, Y., Sekiguchi, R., Saitoh, M., Kubota, K., and Kayama, M. (1994) Components of Pine Seed Lipids, Yukagaku 43, 579–582 (in Japanese).

    CAS  Google Scholar 

  39. Blaise, P., Wolff, R.L., and Farines, M. (1997) Etude Régiospecifique de Triacylglycérols d'Huiles Végétales par Clivage Chimique et RMN 13C Haute Résolution, Oléagineux Corps Gras Lipides 4, 135–141 (in French).

    CAS  Google Scholar 

  40. Aitzetmüller, K. (1997) Recent Developments in the Analysis of Food Lipids and Other Lipids, Oléagineux Corps Gras Lipides 4, 8–19.

    Google Scholar 

  41. Gunstone, F.D., and Wolff, R.L. (1996) Conifer Seed Oils: Distribution of 5δ Acids Between the α-and β-Chains by 13C-Nuclear Magnetic Resonance Spectroscopy, J. Am. Oil Chem. Soc. 73, 1611–1613.

    Article  CAS  Google Scholar 

  42. Rutar, V., Kovac, M., and Lahajnar, G. (1989) Nondestructive Study of Liquids in Single Fir Seeds Using Nuclear Magnetic Resonance and Magic Angle Sample Spinning, J. Am. Oil Chem. Soc. 66, 961–965.

    CAS  Google Scholar 

  43. Lie Ken Jie, M.S.F., Lam, C.C., and Khisar Pasha, M. (1996) 13C Nuclear Magnetic Resonance Spectroscopic Analysis of the Triacylglycerol Composition of Biota orientalis and Carrot Seed Oil, J. Am. Oil Chem. Soc. 73, 557–662.

    Article  Google Scholar 

  44. Aitzetmüller, K. (1993) Capillary GLC Fatty Acid Fingerprints of Seed Lipids—A Tool in Plant Chemotaxonomy?, J. High Resolut. Chromatogr. 16, 488–490.

    Article  Google Scholar 

  45. Berdeaux, O., and Wolff, R.L. (1996) Gas-Liquid Chromatography-Mass Spectrometry of the 4,4-Dimethyloxazoline Derivatives of δ5-Unsaturated Polymethylene-Interrupted Fatty Acids from Conifer Seed Oils, J. Am. Oil Chem. Soc. 73, 1323–1326.

    Article  CAS  Google Scholar 

  46. Tsevegsüren, N., and Aitzetmüller, K. (1997) Unusual δ5cis-Fatty Acids in Seed Oils of Cimicifuga Species, J. High Resolut. Chromatogr. Commun. 20, 237–241.

    Article  Google Scholar 

  47. Christie, W.W. (1998) Mass Spectrometry of Fatty Acids with Methylene-Interrupted Ene-Yne Systems, Chem. Phys. Lipids 94, 35–41.

    Article  CAS  Google Scholar 

  48. Aitzetmüller, K., and Vosmann, K. (1998) Cyclopropenoic Fatty Acids in Gymnosperms: The Seed Oil of Welwitschia, J. Am. Oil Chem. Soc. 75, 1761–1765.

    Google Scholar 

  49. Chamberlain, C.J. (1961) in Gymnosperms, Structure and Evolution, University of Chicago Press, Chicago.

    Google Scholar 

  50. Christie, W.W. (1997) Structural Analysis of Fatty Acids, in Advances in Lipid Methodology-Four (Christie, W.W., ed.) Oily Press, Dundee, pp. 119–169.

    Google Scholar 

  51. Christie, W.W. (1998) Gas Chromatography-Mass Spectrometry Methods for Structural Analysis of Fatty Acids, Lipids 33, 343–353.

    Article  PubMed  CAS  Google Scholar 

  52. Nikolova Damyanova, B., Christie, W.W., and Herslöf, B. (1990) The Structure of the Triacylglycerols of Meadowfoam Oil, J. Am. Oil Chem. Soc. 67, 503–507.

    CAS  Google Scholar 

  53. Aitzetmüller, K. (1998) Komaroffia Oils—An Excellent New Source of δ5-Unsaturated Fatty Acids, J.Am. Oil Chem. Soc. 75, 1897–1899.

    Google Scholar 

  54. Kim, S.J., Lee, K.H., Kim, Y.S., and Joh, Y.G. (1993) Studies on the Presence of all cis5,11,14-C20:3 Fatty Acid in the Seed Oils of Ginkgo, J. Korean Oil Chem. Soc. 10, 57–65 (in Korean).

    Google Scholar 

  55. Hierro, M.T.G., Robertson, G., Christie, W.W., and Joh, Y.G. (1996) The Fatty Acid Composition on the Seeds of Ginkgo biloba, J. Am. Oil Chem. Soc. 73, 575–579.

    CAS  Google Scholar 

  56. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) The Unusual Occurrence of 14-Methylhexadecanoic Acid in Pinaceae Seed Oils Among Plants, Lipids 32, 971–973.

    Article  PubMed  CAS  Google Scholar 

  57. Itabashi, Y., and Takagi, T. (1982) Cis-5-Olefinic Nonmethylene-Interrupted Fatty Acids in Lipids of Seeds, Arils and Leaves of Japanese Yew, Yukagaku 31, 574–579.

    CAS  Google Scholar 

  58. Wolff, R.L. (1998) Clarification on the Taxonomic Position of Sciadopitys verticillata Among Coniferophytes Based on the Seed Oil Fatty Acid Compositions, J.Am. Oil Chem. Soc. 75:757–758.

    CAS  Google Scholar 

  59. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) Bishomopinolenic (7, 11, 14–20∶3) Acid in Pinaceae Seed Oil, J. Am. Oil Chem. Soc. 74, 1583–1586.

    CAS  Google Scholar 

  60. Gellerman, J.L., Anderson, W.H., Richardson, D.G., and Schlenk, H. (1975) Distribution of Arachidonic Acid and Eicosapentaenoic Acids in the Lipids of Mosses, Biochim. Biophys. Acta 388, 277–290.

    PubMed  CAS  Google Scholar 

  61. Groenewald, E.G., Krüger, G.H.J., de Wet, H., Botes, P.J., and van der Westhuizen, A.J. (1990) Detection of Prostaglandins F by Radioimmunoassay in Three South African Bryophytes and its Relation to the Occurrence of Polyunsaturated Fatty Acids, South African J. Sci. 86, 141–153.

    Google Scholar 

  62. Groenewald, E.G., and van der Westhuizen, A.J. (1997) Prostaglandins and Related Substances in Plants, Bot. Rev. 63, 199–220.

    Google Scholar 

  63. Gresti, J., Mignerot, C., Bézard, J., and Wolff, R.L. (1996) Distribution of δ5-Olefinic Acids in the Triacylglycerols from Pinus koraiensis and P. pinaster Seed Oils, J. Am. Oil Chem. Soc. 73, 1539–1547.

    Article  CAS  Google Scholar 

  64. Imbs, A.B., Nevshupova, N.V., and Pham, L.Q. (1998) Triacyl Composition of Pinus koraiensis Seed Oil, J. Am. Oil Chem. Soc. 75, 865–870.

    CAS  Google Scholar 

  65. Wolff, R.L. (1997) New Tools to Explore Lipid Metabolism, INFORM 8, 116–119.

    Google Scholar 

  66. Phillips, B.E., Smith, C.R., Jr., and Tallent, W.H. (1971) Glyerides of Limnanthes douglasii Seed Oil, Lipids 6, 93–99.

    CAS  Google Scholar 

  67. Nikoloya-Damyanova, B., Christie, W.W., and Herslof, B. (1990) The Structure of the Triacylglycerols of Meadowfoam Oil, J. Am. Oil Chem. Soc. 67, 503–507.

    Google Scholar 

  68. Meyen, S.V. (1984) Basic Features of Gymnosperm Systematics and Phylogeny as Evidenced by the Fossil Record, Bot. Rev. 50, 1–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Wolff.

About this article

Cite this article

Wolff, R.L., Christie, W.W., Pédrono, F. et al. Δ5-Olefinic acids in the seed lipids from four Ephedra species and their distribution between the α and β positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes. Lipids 34, 855–864 (1999). https://doi.org/10.1007/s11745-999-0433-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0433-1

Keywords

Navigation