Skip to main content

Tomato lycopene and low density lipoprotein oxidation: A human dietary intervention study

Abstract

Increase in low density lipoprotein (LDL) oxidation is hypothesized to be causally associated with increasing risk of atherosclerosis and coronary heart disease. In recent epidemiological studies, tissue and serum levels of lycopene, a carotenoid available from tomatoes, have been found to be inversely related to risk of coronary heart disease. A study was undertaken to investigate the effect of dietary supplementation of lycopene on LDL oxidation in 19 healthy human subjects. Dietary lycopene was provided using tomato juice, spaghetti sauce, and tomato oleoresin for a period of 1 wk each. Blood samples were collected at the end of each treatment. Serum lycopene was extracted and measured by high-performance liquid chromatography using an absorbance detector. Serum LDL was isolated by precipitation with buffered heparin, and thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (CD) were measured to estimate LDL oxidation. Both methods, to measure LDL oxidation LDL-TBARS and LDL-CD, were in good agreement with each other. Dietary supplementation of lycopene significantly increased serum lycopene levels by at least twofold. Although there was no change in serum cholesterol levels (total, LDL, or high-density lipoprotein), serum lipid peroxidation and LDL oxidation were significantly decreased. These results may have relevance for decreasing the risk for coronary heart disease.

This is a preview of subscription content, access via your institution.

Abbreviations

BHT:

butyrated hydroxytoluene

CD:

conjugated dienes

HDL:

high-density lipoprotein

LDL:

low density lipoprotein

TBARS:

thiobarbituric acid-reactive substances

References

  1. Brown, M.S., and Goldstein, J. (1983) Lipoprotein Metabolism in the Macrophage, Annu. Rev. Biochem. 52, 223–261.

    PubMed  CAS  Article  Google Scholar 

  2. Steinberg, D., and Witztum, J.L. (1990) Lipoproteins and Atherogenesis, J. Am. Med. Assoc., 264, 3047–3052.

    CAS  Article  Google Scholar 

  3. Catheart, M.K., Morel, D.W., and Chisolm, G.M. (1985) Monocytes and Neutrophils Oxidize Low Density Lipoproteins Making It Cytotoxic, J. Leukocyte Biol. 38, 341–350.

    Google Scholar 

  4. Hiramatsu, K., Rosen, H., Heineckle, J.W., Wolfbauer, G., and Chait, A. (1987) Superoxide Initiates Oxidation of Low Density Lipoprotein by Human Monocytes, Arteriosclerosis 7, 55–60.

    PubMed  CAS  Google Scholar 

  5. Witztum, J.L. (1994) The Oxidation Hypothesis of Atherosclerosis, Lancet 344, 793–795.

    PubMed  CAS  Article  Google Scholar 

  6. Esterbauer, H. (1993) Cytotoxicity and Genotoxicity of Lipid-Peroxidation Products, Am. J. Clin. Nutr. 57 (suppl.) 779s-786s.

    PubMed  CAS  Google Scholar 

  7. Hallwell, B., and Gutteridge, J.M. (1984) Lipid Peroxidation, Oxygen Radicals, Cell Damage, and Antioxidant Therapy, Lancet 1, 1396–1397.

    Article  Google Scholar 

  8. Jialal, I., and Devaraj, S. (1996) Low-Density Lipoprotein Oxidation, Antioxidants, and Atherosclerosis: A Clinical Biochemistry Perspective, Clin. Chem. 42, 498–506.

    PubMed  CAS  Google Scholar 

  9. Rimm, E.B., Stampfer, M.J., Ascherio, A., Giovannucci, E., Colditz, G.A., and Willett, W.C. (1993) Vitamin E Consumption and the Risk of Coronary Heart Disease, New Engl. J. Med. 328, 1450–1456.

    PubMed  CAS  Article  Google Scholar 

  10. Kohlmeir, L., Kark, J.D., Gomez-Gracia, E., Martin, B.C., Steck, S.E., Kardinaal, A.F.M., Ringstad, J., Thamm, M., Masaev, V., Riemersma, R., Martin-Moreno, J.M., Huttunen, J.K., and Kok, F.J. (1997) Lycopene and Myocardial Infarction Risk in the EURAMIC Study, Am. J. Epidemiol. 146, 618–626.

    Google Scholar 

  11. Gomez-Aracena, J., Sloots, L., Graciarodriguez, A., Vantveer, P., Gomez-Garcia, C., Garciaalcantara, A., Martin-Moreno, J.M., Kok, F.J., and Navajas, J.F.C. (1997) Antioxidants in Adipose Tissue and Myocardial Infarction in a Mediterranean Area: the EURAMIC Study in Malaga, Nutr. Metab. Cardiovascul. Disease 7, 376–382.

    CAS  Google Scholar 

  12. Kristenson, M., Zieden, B., Kucinskiene, Z., Elinder, L.S., Bergdahl, B., Elwing, B., Abaravicius, A., Razinkoviene, L., Calkauskas, H., and Olsson, A. (1997) Antioxidant State and Mortality from Coronary Heart Disease in Lithuanian and Swedish Men: Concomitant Cross Sectional Study of Men Aged 50, Br. Med. J. 314, 629–633.

    CAS  Google Scholar 

  13. Rao, A.V., and Agarwal, S. (1998) Role of Lycopene as Antioxidant Carotenoid in the Prevention of Chronic Diseases: A Review, Nutr. Res., in press.

  14. DiMascio, P., Kaiser, S., and Sies, H. (1989) Lycopene as the most Effective Biological Carotenoid Singlet Oxygen Quencher, Arch. Biochem. Biophys. 274, 532–538.

    CAS  Article  Google Scholar 

  15. Miller, N.J., Sampson, J., Candeias, L.P., Bramley, P.M., and Rice-Evans, C.A. (1996) Antioxidant Activities of Carotenes and Xanthophylls, FEBS Lett. 384, 240–246.

    PubMed  CAS  Article  Google Scholar 

  16. Rao, A.V., and Agarwal, S. (1998) Effect of Diet and Smoking on Serum Lycopene and Lipid Peroxidation, Nutr. Res 18, 713–721.

    CAS  Article  Google Scholar 

  17. Stahl, W., Schwarz, W., Sundquist, A.R., and Sies, H. (1992) cis-trans Isomers of Lycopene and β-carotene Human Serum and Tissues, Arch. Biochem. Biophys. 294, 173–177.

    PubMed  CAS  Article  Google Scholar 

  18. Association of Official Analytical Chemists (1980) AOAC Official Methods of Analysis, Association of Official Analytical Chemists, Washington, DC.

    Google Scholar 

  19. Wieland, H., and Seidel, D. (1983) A Simple Specific Method for Precipitation of Low Density Lipoproteins, J. Lipid Res. 24, 904–909.

    PubMed  CAS  Google Scholar 

  20. Allain, C.A., Poon, L.S., Chan, C.S.G., Richmond, W., and Fu, P.C. (1974) Enzymatic Determination of Total Serum Cholesterol, Clin. Chem. 20, 470–474.

    PubMed  CAS  Google Scholar 

  21. Jentzsch, A.M., Bachmann, H., Furst, P. and Biesalski, H.K. (1996) Improved Analysis of Malondialdehyde in Human Body Fluids, Free Radical. Biol. Med. 20, 251–256.

    CAS  Article  Google Scholar 

  22. Draper, H.H., Squires, E.J., Mahmoodi, H., Wu, J., Agarwal, S., and Hadley, M. (1993) A Comparative Evaluation of Thiobarbituric Acid Methods for the Determination of Malondialdehyde in Biological Materials, Free. Radical Biol. Med., 15, 353–363.

    CAS  Article  Google Scholar 

  23. Ahotupa, M., Ruutu, M., and Mantyla, E. (1996) Simple Methods of Quantifying Oxidation Products and Antioxidant Potential of Low Density Lipoproteins, Clin. Biochem. 29, 139–144.

    PubMed  CAS  Article  Google Scholar 

  24. Stahl, W., and Sies, H. (1996) Lycopene: A Biologically Important Carotenoid for Humans? Arch. Biochem. Biophys. 336, 1–9.

    PubMed  CAS  Article  Google Scholar 

  25. Ratkowsky, D.A., Evans, M.A., and Alldredge, J.R. (1993) Cross-Over Experiments: Design, Analysis and Application, Marcel Dekker, New York.

    Google Scholar 

  26. Gärtner, C., Stahl, W., and Sies, H. (1997) Lycopene Is More Bioavailable from Tomato Paste Than from Fresh Tomatoes, Am. J. Clin. Nutr. 66, 116–122.

    PubMed  Google Scholar 

  27. Klienveld, H.A., Hak-Lemmers, H.L.M., Stalenhoef, A.H.F., and Demacker, P.N.M. (1992) Improved Measurement of Low-Density Lipoprotein Susceptibility to Copper-Induced Oxidation: Application of a Short Procedure for Isolating Low-Density Lipoprotein, Clin. Chem. 38, 2066–2072.

    Google Scholar 

  28. Väisänen, S., Gävert, J., Julkunen, A., Voutilainen, E., and Penttilä, I. (1992) Contents of Apolipoprotein A-I, A-II and B of the Human Serum Fractions for High-Density and Low-Density Lipoproteins Prepared by Common Precipitation Methods, Scand. J. Clin. Invest. 52, 853–862.

    PubMed  Google Scholar 

  29. Esterbauer, H., Striegl, G., Puhl, H., Obrreither, S., Rotheneder, M., El Saadani, M., and Jurgens, G. (1989) The Role of Vitamin E and Carotenoids in Preventing Low Density Lipoprotein, Ann. N.Y. Acad. Sci. 570, 254–267.

    PubMed  CAS  Google Scholar 

  30. Boyd, N.F., and McGuire, V. (1990) Evidence of Lipid Peroxidation in Premenopausal Women with Mammographic Dysplasia, Cancer Lett. 50, 31–37.

    PubMed  CAS  Article  Google Scholar 

  31. Mukai, F.H., and Goldstein, B.D. (1975) Mutagenicity of Malondialdehyde, a Decomposition Product of Peroxidized Polyunsaturated Fatty Acids, Science 191, 868–869.

    Article  Google Scholar 

  32. Pincemail, J. (1995) Free Radicals and Antioxidants in Human Disease, in Analysis of Free Radicals in Biological Systems (Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L., eds.) pp. 83–98, Birkhäuser Verlag Basel.

    Google Scholar 

  33. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Beyond Cholesterol: Modifications of Low Density Lipoproteins That Increase Its Atherogenicity, N. Engl. J. Med. 320, 915–924.

    PubMed  CAS  Article  Google Scholar 

  34. Suber, A., Heimendinger, J., Kreb-Smith, S., Patterson, B., Kessler, R., and Pivonka, E. (1992) 5-a-Day for Better Health: A Baseline Study of American's Fruit and Vegetable Consumption, National Cancer Institute, Washington, DC.

    Google Scholar 

  35. Health Canada (1992) Canada's Food Guide to Healthy Eating, Ministry of Supply and Services Canada, Cat. No. H39-253/1992E, Ottawa.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venketeshwer Rao.

About this article

Cite this article

Agarwal, S., Rao, A.V. Tomato lycopene and low density lipoprotein oxidation: A human dietary intervention study. Lipids 33, 981–984 (1998). https://doi.org/10.1007/s11745-998-0295-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0295-6

Keywords

  • Coronary Heart Disease
  • Carotenoid
  • Lycopene
  • Conjugate Diene
  • Healthy Human Subject